Dataset simulation with LIgO ================================================================================== .. meta:: :twitter:card: summary :twitter:site: @immuneml :twitter:title: immuneML: simulate antigen or disease-associated signals in AIRR datasets :twitter:description: See tutorials on how to simulate antigen or disease-associated signals in AIRR datasets. :twitter:image: https://docs.immuneml.uio.no/_images/receptor_classification_overview.png For simulation of AIRR datasets with user-defined signals, immuneML uses LIgO. It supports simulation on both repertoire and receptor level. For more details on the decisions behind simulation, see the Methods section of the original paper: Chernigovskaya, M., et al. (2023). Simulation of adaptive immune receptors and repertoires with complex immune information to guide the development and benchmarking of AIRR machine learning (p. 2023.10.20.562936). bioRxiv. https://doi.org/10.1101/2023.10.20.562936 .. toctree:: :maxdepth: 1 ligo_simulation_yaml how_to_simulate_co-occuring_signals how_to_simulate_paired_chain_data simulation_with_custom_signal_functions