from pathlib import Path
from typing import Tuple, List
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
from immuneML.data_model.dataset.ReceptorDataset import ReceptorDataset
from immuneML.reports.ReportOutput import ReportOutput
from immuneML.reports.ReportResult import ReportResult
from immuneML.reports.data_reports.DataReport import DataReport
from immuneML.util.PathBuilder import PathBuilder
[docs]class ReceptorDatasetOverview(DataReport):
"""
This report plots the length distribution per chain for a receptor (paired-chain) dataset.
Arguments:
batch_size (int): how many receptors to load at once; 50 000 by default
YAML specification:
.. indent with spaces
.. code-block:: yaml
reports:
my_receptor_overview_report: ReceptorDatasetOverview
"""
def __init__(self, batch_size: int, dataset: ReceptorDataset = None, result_path: Path = None, name: str = None):
super().__init__(dataset, result_path, name)
self.batch_size = batch_size
[docs] @classmethod
def build_object(cls, **kwargs):
return ReceptorDatasetOverview(**kwargs)
def _generate(self) -> ReportResult:
PathBuilder.build(self.result_path)
figure, tables = self._generate_sequence_length_distribution_plots()
return ReportResult(name=self.name, output_figures=[figure], output_tables=tables)
def _prepare_data_for_length_distribution(self):
receptors = {}
for receptor in self.dataset.get_data(self.batch_size):
for chain in receptor.get_chains():
receptor_dict = {
"length": len(receptor.get_chain(chain).get_sequence()),
"chain": chain
}
if chain in receptors:
receptors[chain].append(receptor_dict)
else:
receptors[chain] = [receptor_dict]
chains = list(receptors.keys())
dfs = [pd.DataFrame(receptors[chain]) for chain in chains]
return dfs, chains
def _generate_sequence_length_distribution_plots(self) -> Tuple[ReportOutput, List[ReportOutput]]:
dfs, chains = self._prepare_data_for_length_distribution()
fig = go.Figure()
fig.add_trace(go.Histogram(
x=dfs[0]["length"],
histnorm='probability density',
opacity=0.75,
name=chains[0],
marker={'color': px.colors.diverging.Tealrose[0]}
))
fig.add_trace(go.Histogram(
x=dfs[1]["length"],
histnorm='probability density',
opacity=0.75,
name=chains[1],
marker={'color': px.colors.diverging.Tealrose[-2]}
))
fig.update_layout(title_text="Receptor sequence length distribution per chain", xaxis_title_text="receptor sequence length",
yaxis_title_text="frequency", bargap=0.2, bargroupgap=0.1, template="plotly_white")
image_output, table_outputs = self._store_sequence_distribution_data(fig, dfs, chains)
return image_output, table_outputs
def _store_sequence_distribution_data(self, fig, dfs, chains):
fig.write_html(str(self.result_path / "sequence_length_distribution.html"))
image_output = ReportOutput(self.result_path / "sequence_length_distribution.html", name="sequence length distribution per chain")
table_outputs = [ReportOutput(self.result_path / f"sequence_length_distribution_chain_{chains[index]}.csv") for index in range(len(chains))]
for index, df in enumerate(dfs):
df.to_csv(table_outputs[index].path, index=False)
return image_output, table_outputs
[docs] def check_prerequisites(self):
if isinstance(self.dataset, ReceptorDataset):
return True
else:
return False