import abc
import numpy as np
import pandas as pd
from scipy import sparse
from immuneML.caching.CacheHandler import CacheHandler
from immuneML.data_model.encoded_data.EncodedData import EncodedData
from immuneML.encodings.DatasetEncoder import DatasetEncoder
from immuneML.encodings.EncoderParams import EncoderParams
from immuneML.util.EncoderHelper import EncoderHelper
from immuneML.util.ReflectionHandler import ReflectionHandler
[docs]
class EvennessProfileEncoder(DatasetEncoder):
"""
The EvennessProfileEncoder class encodes a repertoire based on the clonal frequency distribution. The evenness for
a given repertoire is defined as follows:
.. math::
^{\\alpha} \\mathrm{E}(\\mathrm{f})=\\frac{\\left(\\sum_{\\mathrm{i}=1}^{\\mathrm{n}} \\mathrm{f}_{\\mathrm{i}}^{\\alpha}\\right)^{\\frac{1}{1-\\alpha}}}{\\mathrm{n}}
That is, it is the exponential of Renyi entropy at a given alpha divided by the species richness, or number of unique
sequences.
Reference: Greiff et al. (2015). A bioinformatic framework for immune repertoire diversity profiling enables detection of immunological
status. Genome Medicine, 7(1), 49. `doi.org/10.1186/s13073-015-0169-8 <https://doi.org/10.1186/s13073-015-0169-8>`_
Arguments:
min_alpha (float): minimum alpha value to use
max_alpha (float): maximum alpha value to use
dimension (int): dimension of output evenness profile vector, or the number of alpha values to linearly space
between min_alpha and max_alpha
YAML specification:
.. indent with spaces
.. code-block:: yaml
my_evenness_profile:
EvennessProfile:
min_alpha: 0
max_alpha: 10
dimension: 51
"""
STEP_ENCODED = "encoded"
STEP_VECTORIZED = "vectorized"
dataset_mapping = {
"RepertoireDataset": "EvennessProfileRepertoireEncoder",
}
def __init__(self, min_alpha: float, max_alpha: float, dimension: int, name: str = None):
self.min_alpha = min_alpha
self.max_alpha = max_alpha
self.dimension = dimension
self.name = name
@staticmethod
def _prepare_parameters(min_alpha: float, max_alpha: float, dimension: int, name: str = None):
return {
"min_alpha": min_alpha,
"max_alpha": max_alpha,
"dimension": dimension,
"name": name
}
[docs]
@staticmethod
def build_object(dataset=None, **params):
EncoderHelper.check_dataset_type_available_in_mapping(dataset, EvennessProfileEncoder)
prepared_params = EvennessProfileEncoder._prepare_parameters(**params)
encoder = ReflectionHandler.get_class_by_name(EvennessProfileEncoder.dataset_mapping[dataset.__class__.__name__],
"evenness_profile/")(**prepared_params)
return encoder
[docs]
def encode(self, dataset, params: EncoderParams):
encoded_dataset = CacheHandler.memo_by_params(self._prepare_caching_params(dataset, params),
lambda: self._encode_new_dataset(dataset, params))
return encoded_dataset
def _prepare_caching_params(self, dataset, params: EncoderParams, step: str = ""):
return (("example_identifiers", tuple(dataset.get_example_ids())),
("dataset_metadata", dataset.metadata_file if hasattr(dataset, "metadata_file") else None),
("dataset_type", dataset.__class__.__name__),
("labels", tuple(params.label_config.get_labels_by_name())),
("encoding", EvennessProfileEncoder.__name__),
("learn_model", params.learn_model),
("step", step),
("encoding_params", tuple(vars(self).items())))
def _encode_data(self, dataset, params: EncoderParams) -> EncodedData:
encoded_example_list, example_ids, encoded_labels = CacheHandler.memo_by_params(
self._prepare_caching_params(dataset, params, EvennessProfileEncoder.STEP_ENCODED),
lambda: self._encode_examples(dataset, params))
vectorized_examples = CacheHandler.memo_by_params(
self._prepare_caching_params(dataset, params, EvennessProfileEncoder.STEP_VECTORIZED),
lambda: self._vectorize_encoded(examples=encoded_example_list))
feature_names = list(range(self.dimension))
feature_annotations = pd.DataFrame({"feature": feature_names})
encoded_data = EncodedData(examples=vectorized_examples,
labels=encoded_labels,
feature_names=feature_names,
example_ids=example_ids,
feature_annotations=feature_annotations,
encoding=EvennessProfileEncoder.__name__)
return encoded_data
@abc.abstractmethod
def _encode_new_dataset(self, dataset, params: EncoderParams):
pass
@abc.abstractmethod
def _encode_examples(self, dataset, params: EncoderParams):
pass
def _vectorize_encoded(self, examples: list):
vectorized_examples = sparse.csr_matrix(np.vstack(examples))
return vectorized_examples