import hashlib
import math
from multiprocessing.pool import Pool
import numpy as np
from immuneML.analysis.entropy_calculations.EntropyCalculator import EntropyCalculator
from immuneML.caching.CacheHandler import CacheHandler
from immuneML.caching.CacheObjectType import CacheObjectType
from immuneML.data_model.dataset.RepertoireDataset import RepertoireDataset
from immuneML.data_model.receptor.receptor_sequence.SequenceFrameType import SequenceFrameType
from immuneML.encodings.EncoderParams import EncoderParams
from immuneML.encodings.evenness_profile.EvennessProfileEncoder import EvennessProfileEncoder
from immuneML.util.Logger import log
[docs]
class EvennessProfileRepertoireEncoder(EvennessProfileEncoder):
@log
def _encode_new_dataset(self, dataset, params: EncoderParams):
encoded_data = self._encode_data(dataset, params)
encoded_dataset = RepertoireDataset(repertoires=dataset.repertoires,
encoded_data=encoded_data,
labels=dataset.labels,
metadata_file=dataset.metadata_file)
return encoded_dataset
@log
def _encode_examples(self, dataset, params: EncoderParams):
arguments = [(repertoire, params) for repertoire in dataset.repertoires]
with Pool(params.pool_size) as pool:
chunksize = math.floor(dataset.get_example_count()/params.pool_size) + 1
repertoires = pool.starmap(self.get_encoded_repertoire, arguments, chunksize=chunksize)
encoded_repertoire_list, repertoire_names, labels = zip(*repertoires)
encoded_labels = {k: [dic[k] for dic in labels] for k in labels[0]} if params.encode_labels else None
return list(encoded_repertoire_list), list(repertoire_names), encoded_labels
[docs]
def get_encoded_repertoire(self, repertoire, params: EncoderParams):
params.model = vars(self)
return CacheHandler.memo_by_params((("encoding_model", params.model),
("labels", params.label_config.get_labels_by_name()),
("repertoire_id", repertoire.identifier),
("repertoire_data", hashlib.sha256(np.ascontiguousarray(repertoire.get_sequence_aas())).hexdigest())),
lambda: self.encode_repertoire(repertoire, params), CacheObjectType.ENCODING_STEP)
[docs]
def encode_repertoire(self, repertoire, params: EncoderParams):
alphas = np.linspace(start=params.model["min_alpha"], stop=params.model["max_alpha"], num=params.model["dimension"])
counts = [sequence.metadata.count for sequence in repertoire.sequences if sequence.metadata.frame_type == SequenceFrameType.IN]
freqs = np.array(counts)
freqs = freqs[np.nonzero(freqs)]
evenness_profile = np.array([np.exp(EntropyCalculator.renyi_entropy(freqs, alpha))/len(freqs) for alpha in alphas])
if params.encode_labels:
label_config = params.label_config
labels = dict()
for label_name in label_config.get_labels_by_name():
label = repertoire.metadata[label_name]
labels[label_name] = label
else:
labels = None
return evenness_profile, repertoire.identifier, labels