Source code for immuneML.reports.encoding_reports.RelevantSequenceExporter

import logging
import os
from pathlib import Path

import pandas as pd

from immuneML.data_model.dataset.RepertoireDataset import RepertoireDataset
from immuneML.data_model.receptor.RegionType import RegionType
from immuneML.encodings.abundance_encoding.CompAIRRSequenceAbundanceEncoder import CompAIRRSequenceAbundanceEncoder
from immuneML.encodings.abundance_encoding.SequenceAbundanceEncoder import SequenceAbundanceEncoder
from immuneML.reports.ReportOutput import ReportOutput
from immuneML.reports.ReportResult import ReportResult
from immuneML.reports.encoding_reports.EncodingReport import EncodingReport
from immuneML.util.PathBuilder import PathBuilder


[docs] class RelevantSequenceExporter(EncodingReport): """ Exports the sequences that are extracted as label-associated when using the :py:obj:`~immuneML.encodings.abundance_encoding.SequenceAbundanceEncoder.SequenceAbundanceEncoder` or :py:obj:`~immuneML.encodings.abundance_encoding.CompAIRRSequenceAbundanceEncoder.CompAIRRSequenceAbundanceEncoder` in AIRR-compliant format. Arguments: there are no arguments for this report. YAML specification: .. indent with spaces .. code-block:: yaml my_relevant_sequences: RelevantSequenceExporter """ COLUMN_MAPPING = { "v_genes": "v_call", "j_genes": "j_call", "sequences": "cdr3", 'sequence_aas': "cdr3_aa" } def __init__(self, dataset: RepertoireDataset = None, result_path: Path = None, name: str = None, number_of_processes: int = 1): super().__init__(dataset=dataset, result_path=result_path, name=name, number_of_processes=number_of_processes)
[docs] @classmethod def build_object(cls, **kwargs): return RelevantSequenceExporter(**kwargs)
def _generate(self) -> ReportResult: df = pd.read_csv(self.dataset.encoded_data.info["relevant_sequence_path"]) column_mapping = self._compute_column_mapping(df) df.rename(columns=column_mapping, inplace=True) PathBuilder.build(self.result_path) filename = self.result_path / "relevant_sequences.csv" df.to_csv(filename, index=False) return ReportResult(self.name, info=f"Exports the sequences that are extracted as label-associated using the {self.dataset.encoded_data.encoding} in AIRR-compliant format.", output_tables=[ReportOutput(filename, "relevant sequences")]) def _compute_column_mapping(self, df: pd.DataFrame) -> dict: columns = df.columns.values.tolist() column_mapping = {} region_type = self.dataset.get_repertoire(0).get_region_type() if "sequence_aas" in columns and (region_type != RegionType.IMGT_CDR3 and region_type != RegionType.IMGT_CDR3.name): column_mapping["sequence_aas"] = "sequence_aa" if "sequences" in columns and (region_type != RegionType.IMGT_CDR3 and region_type != RegionType.IMGT_CDR3.name): column_mapping['sequences'] = "sequence" return {**RelevantSequenceExporter.COLUMN_MAPPING, **column_mapping}
[docs] def check_prerequisites(self): valid_encodings = [SequenceAbundanceEncoder.__name__, CompAIRRSequenceAbundanceEncoder.__name__] if self.dataset.encoded_data is None or self.dataset.encoded_data.info is None: logging.warning("RelevantSequenceExporter: the dataset is not encoded, skipping this report...") return False elif self.dataset.encoded_data.encoding not in valid_encodings: logging.warning(f"RelevantSequenceExporter: the dataset encoding ({self.dataset.encoded_data.encoding}) was not in the list of valid " f"encodings ({valid_encodings}), skipping this report...") return False elif "relevant_sequence_path" not in self.dataset.encoded_data.info or not os.path.isfile(self.dataset.encoded_data.info['relevant_sequence_path']): logging.warning(f"RelevantSequenceExporter: the relevant sequences were not set for this encoded data, skipping this report...") return False else: return True