Source code for immuneML.reports.ml_reports.Coefficients

import logging
from numbers import Number
from pathlib import Path

import pandas as pd
import plotly.express as px
import yaml

from immuneML.data_model.dataset.Dataset import Dataset
from immuneML.hyperparameter_optimization.HPSetting import HPSetting
from immuneML.ml_methods.LogisticRegression import LogisticRegression
from immuneML.ml_methods.MLMethod import MLMethod
from immuneML.ml_methods.RandomForestClassifier import RandomForestClassifier
from immuneML.ml_methods.SVC import SVC
from immuneML.ml_methods.SVM import SVM
from immuneML.reports.ReportOutput import ReportOutput
from immuneML.reports.ReportResult import ReportResult
from immuneML.reports.ml_reports.CoefficientPlottingSetting import CoefficientPlottingSetting
from immuneML.reports.ml_reports.CoefficientPlottingSettingList import CoefficientPlottingSettingList
from immuneML.reports.ml_reports.MLReport import MLReport
from immuneML.util.ParameterValidator import ParameterValidator
from immuneML.util.PathBuilder import PathBuilder
from scripts.specification_util import update_docs_per_mapping


[docs] class Coefficients(MLReport): """ A report that plots the coefficients for a given ML method in a barplot. Can be used for :ref:`LogisticRegression`, :ref:`SVM`, :ref:`SVC`, and :ref:`RandomForestClassifier`. In the case of RandomForest, the feature importances will be plotted. When used in :ref:`TrainMLModel` instruction, the report can be specified under 'models', both on the selection and assessment levels. Which coefficients should be plotted (for example: only nonzero, above a certain threshold, ...) can be specified. Multiple options can be specified simultaneously. By default the 25 largest coefficients are plotted. The full set of coefficients will also be exported as a csv file. Arguments: coefs_to_plot (list): A list specifying which coefficients should be plotted. For options see :py:obj:`~immuneML.reports.ml_reports.CoefficientPlottingSetting.CoefficientPlottingSetting`. cutoff (list): If 'cutoff' is specified under 'coefs_to_plot', the cutoff values can be specified here. The coefficients which have an absolute value equal to or greater than the cutoff will be plotted. n_largest (list): If 'n_largest' is specified under 'coefs_to_plot', the values for n can be specified here. These should be integer values. The n largest coefficients are determined based on their absolute values. YAML specification: .. indent with spaces .. code-block:: yaml my_coef_report: Coefficients: coefs_to_plot: - all - nonzero - cutoff - n_largest cutoff: - 0.1 - 0.01 n_largest: - 5 - 10 """
[docs] @classmethod def build_object(cls, **kwargs): location = "Coefficients" coefs_to_plot = [coef.upper() for coef in kwargs["coefs_to_plot"]] name = kwargs["name"] if "name" in kwargs else None ParameterValidator.assert_all_in_valid_list(coefs_to_plot, [item.name.upper() for item in CoefficientPlottingSetting], location, "coefs_to_plot") if CoefficientPlottingSetting.CUTOFF.name in coefs_to_plot: cutoff = kwargs["cutoff"] ParameterValidator.assert_type_and_value(cutoff, list, location, "cutoff") ParameterValidator.assert_all_type_and_value(cutoff, Number, location, "cutoff", min_inclusive=1e-15) else: cutoff = [] if CoefficientPlottingSetting.N_LARGEST.name in coefs_to_plot: n_largest = kwargs["n_largest"] ParameterValidator.assert_type_and_value(n_largest, list, location, "n_largest") ParameterValidator.assert_all_type_and_value(n_largest, int, location, "n_largest", min_inclusive=1) else: n_largest = [] coefs = CoefficientPlottingSettingList() for keyword in coefs_to_plot: coefs.append(CoefficientPlottingSetting[keyword.upper()]) return Coefficients(coefs_to_plot=coefs, cutoff=cutoff, n_largest=n_largest, name=name)
def __init__(self, coefs_to_plot: CoefficientPlottingSettingList, cutoff: list, n_largest: list, train_dataset: Dataset = None, test_dataset: Dataset = None, method: MLMethod = None, result_path: Path = None, name: str = None, hp_setting: HPSetting = None, label=None, number_of_processes: int = 1): super().__init__(train_dataset=train_dataset, test_dataset=test_dataset, method=method, result_path=result_path, name=name, hp_setting=hp_setting, label=label, number_of_processes=number_of_processes) self._coefs_to_plot = coefs_to_plot self._cutoff = cutoff self._n_largest = n_largest def _generate(self): PathBuilder.build(self.result_path) paths = [] self._set_plotting_parameters() plot_data = self._retrieve_plot_data() plot_data["abs_coefficients"] = abs(plot_data["coefficients"]) plot_data.sort_values(by="abs_coefficients", inplace=True, ascending=False) result_table_path = self._write_results_table(plot_data[["features", "coefficients"]]) self._write_settings() if CoefficientPlottingSetting.ALL in self._coefs_to_plot: report_output_fig = self._plot(plotting_data=plot_data, output_name="all_coefficients") paths.append(report_output_fig) if CoefficientPlottingSetting.NONZERO in self._coefs_to_plot: nonzero_data = plot_data[plot_data["coefficients"] != 0] report_output_fig = self._plot(plotting_data=nonzero_data, output_name="nonzero_coefficients") paths.append(report_output_fig) if CoefficientPlottingSetting.CUTOFF in self._coefs_to_plot: for cutoff_val in self._cutoff: cutoff_data = plot_data[plot_data["abs_coefficients"] >= cutoff_val] report_output_fig = self._plot(plotting_data=cutoff_data, output_name="cutoff_{}_coefficients".format(cutoff_val)) paths.append(report_output_fig) if CoefficientPlottingSetting.N_LARGEST in self._coefs_to_plot: for n_val in self._n_largest: n_largest_data = plot_data.nlargest(n=n_val, columns=["abs_coefficients"]) report_output_fig = self._plot(plotting_data=n_largest_data, output_name="largest_{}_coefficients".format(n_val)) paths.append(report_output_fig) return ReportResult(self.name, info=f"{self._y_axis_title}s of the trained {self.method.__class__.__name__} model", output_tables=[ReportOutput(result_table_path, "features and coefficients csv")], output_figures=[p for p in paths if p is not None]) def _set_plotting_parameters(self): if isinstance(self.method, RandomForestClassifier): self._param_field = "feature_importances" self._y_axis_title = "Feature importance" else: # SVM, logistic regression, ... self._param_field = "coefficients" self._y_axis_title = "Coefficient value" def _write_settings(self): if self.hp_setting is not None: file_path = self.result_path / "settings.yaml" with file_path.open("w") as file: yaml.dump({"preprocessing": self.hp_setting.preproc_sequence_name, "encoder": self.hp_setting.encoder_name, "ml_method": self.hp_setting.ml_method_name}, file) def _write_results_table(self, plotting_data): filepath = self.result_path / "coefficients.csv" plotting_data.to_csv(filepath, index=False) return filepath def _retrieve_plot_data(self): coefficients = self.method.get_params()[self._param_field] feature_names = self._retrieve_feature_names() return pd.DataFrame({"coefficients": coefficients, "features": feature_names}) def _retrieve_feature_names(self): if self.train_dataset and self.train_dataset.encoded_data: return self.train_dataset.encoded_data.feature_names def _plot(self, plotting_data, output_name): if plotting_data.empty: logging.warning(f"Coefficients: empty data subset specified, skipping {output_name} plot...") else: filename = self.result_path / f"{output_name}.html" figure = px.bar(plotting_data, x='features', y='coefficients', template='plotly_white', title=f"{type(self.method).__name__}{' (' + self.method.name + ') - ' if self.method.name is not None else ' - '}" f"{' '.join(output_name.split('_'))}") figure.update_traces(marker_color=px.colors.sequential.Teal[3]) with filename.open("w") as file: figure.write_html(file) return ReportOutput(filename)
[docs] def check_prerequisites(self): run_report = True if not any([isinstance(self.method, legal_method) for legal_method in (RandomForestClassifier, LogisticRegression, SVM, SVC)]): logging.warning(f"Coefficients report can only be created for RandomForestClassifier, LogisticRegression, SVC, or SVM, but got " f"{type(self.method).__name__} instead. Coefficients report will not be created.") run_report = False return run_report
[docs] @staticmethod def get_documentation(): doc = str(Coefficients.__doc__) valid_values = str([option.name for option in CoefficientPlottingSetting])[1:-1].replace("'", "`") mapping = { "For options see :py:obj:`~immuneML.reports.ml_reports.CoefficientPlottingSetting.CoefficientPlottingSetting`.": f"Valid values are: {valid_values}." } doc = update_docs_per_mapping(doc, mapping) return doc