immuneML.workflows.instructions.dataset_generation package
Submodules
immuneML.workflows.instructions.dataset_generation.DatasetExportInstruction module
- class immuneML.workflows.instructions.dataset_generation.DatasetExportInstruction.DatasetExportInstruction(datasets: List[Dataset], exporters: List[DataExporter], number_of_processes: int = 1, preprocessing_sequence: List[Preprocessor] = None, result_path: Path = None, name: str = None)[source]
Bases:
Instruction
DatasetExport instruction takes a list of datasets as input, optionally applies preprocessing steps, and outputs the data in specified formats.
- Parameters:
datasets (list) – a list of datasets to export in all given formats
preprocessing_sequence (list) – which preprocessing sequence to use on the dataset(s), this item is optional and does not have to be specified.
specified (When) –
datasets. (the same preprocessing sequence will be applied to all) –
exporters (list) – a list of formats in which to export the datasets. Valid formats are class names of any non-abstract class inheriting
DataExporter
.number_of_processes (int) – how many processes to use during repertoire export (not used for sequence datasets)
YAML specification:
my_dataset_export_instruction: # user-defined instruction name type: DatasetExport # which instruction to execute datasets: # list of datasets to export - my_generated_dataset - my_dataset_from_adaptive preprocessing_sequence: my_preprocessing_sequence number_of_processes: 4 export_formats: # list of formats to export the datasets to - AIRR - ImmuneML
- run(result_path: Path) DatasetExportState [source]
immuneML.workflows.instructions.dataset_generation.DatasetExportState module
- class immuneML.workflows.instructions.dataset_generation.DatasetExportState.DatasetExportState(datasets: List[immuneML.data_model.dataset.Dataset.Dataset], formats: List[str], preprocessing_sequence: List[immuneML.preprocessing.Preprocessor.Preprocessor], paths: dict, result_path: pathlib.Path, name: str)[source]
Bases:
object
- formats: List[str]
- name: str
- paths: dict
- preprocessing_sequence: List[Preprocessor]
- result_path: Path