from sklearn.linear_model import LogisticRegression as SklearnLogisticRegression
from immuneML.ml_methods.SklearnMethod import SklearnMethod
from scripts.specification_util import update_docs_per_mapping
[docs]
class LogisticRegression(SklearnMethod):
"""
This is a wrapper of scikit-learn’s LogisticRegression class. Please see the
`scikit-learn documentation <https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html>`_
of LogisticRegression for the parameters.
Note: if you are interested in plotting the coefficients of the logistic regression model,
consider running the :ref:`Coefficients` report.
For usage instructions, check :py:obj:`~immuneML.ml_methods.SklearnMethod.SklearnMethod`.
YAML specification:
.. indent with spaces
.. code-block:: yaml
my_logistic_regression: # user-defined method name
LogisticRegression: # name of the ML method
# sklearn parameters (same names as in original sklearn class)
penalty: l1 # always use penalty l1
C: [0.01, 0.1, 1, 10, 100] # find the optimal value for C
# Additional parameter that determines whether to print convergence warnings
show_warnings: True
# if any of the parameters under LogisticRegression is a list and model_selection_cv is True,
# a grid search will be done over the given parameters, using the number of folds specified in model_selection_n_folds,
# and the optimal model will be selected
model_selection_cv: True
model_selection_n_folds: 5
# alternative way to define ML method with default values:
my_default_logistic_regression: LogisticRegression
"""
default_parameters = {"max_iter": 1000, "solver": "saga"}
def __init__(self, parameter_grid: dict = None, parameters: dict = None):
parameters = {**self.default_parameters, **(parameters if parameters is not None else {})}
if parameter_grid is not None:
parameter_grid = parameter_grid
else:
parameter_grid = {"max_iter": [1000]}
super(LogisticRegression, self).__init__(parameter_grid=parameter_grid, parameters=parameters)
def _get_ml_model(self, cores_for_training: int = 2, X=None):
params = self._parameters.copy()
params["n_jobs"] = cores_for_training
return SklearnLogisticRegression(**params)
[docs]
def can_predict_proba(self) -> bool:
return True
[docs]
def get_params(self):
params = self.model.get_params()
params["coefficients"] = self.model.coef_[0].tolist()
params["intercept"] = self.model.intercept_.tolist()
return params
[docs]
@staticmethod
def get_documentation():
doc = str(LogisticRegression.__doc__)
mapping = {
"For usage instructions, check :py:obj:`~immuneML.ml_methods.SklearnMethod.SklearnMethod`.": SklearnMethod.get_usage_documentation(
"LogisticRegression"),
}
doc = update_docs_per_mapping(doc, mapping)
return doc