import os
from pathlib import Path
from immuneML.environment.EnvironmentSettings import EnvironmentSettings
from immuneML.ml_methods.util.Util import Util as MLUtil
from immuneML.presentation.TemplateParser import TemplateParser
from immuneML.presentation.html.Util import Util
from immuneML.util.PathBuilder import PathBuilder
from immuneML.util.StringHelper import StringHelper
from immuneML.workflows.instructions.ml_model_application.MLApplicationState import MLApplicationState
[docs]class MLApplicationHTMLBuilder:
CSS_PATH = EnvironmentSettings.html_templates_path / "css/custom.css"
[docs] @staticmethod
def build_from_objects(state: MLApplicationState = None) -> str:
base_path = PathBuilder.build_from_objects(state.path / "../HTML_output/")
html_map = MLApplicationHTMLBuilder.make_html_map(state, base_path)
result_file = base_path / "MLModelTraining_{state.name}.html"
TemplateParser.parse(template_path=EnvironmentSettings.html_templates_path / "MLApplication.html",
template_map=html_map, result_path=result_file)
return result_file
[docs] @staticmethod
def make_html_map(state: MLApplicationState, base_path: Path) -> dict:
return {
"css_style": Util.get_css_content(MLApplicationHTMLBuilder.CSS_PATH),
"hp_setting": state.hp_setting.get_key(),
'immuneML_version': MLUtil.get_immuneML_version(),
"label": state.label_config.get_labels_by_name()[0],
"dataset_name": state.dataset.name,
"dataset_type": StringHelper.camel_case_to_word_string(type(state.dataset).__name__),
"example_count": state.dataset.get_example_count(),
"dataset_size": f"{state.dataset.get_example_count()} {type(state.dataset).__name__.replace('Dataset', 's').lower()}",
"labels": [{"name": label, "values": str(state.label_config.get_label_values(label))[1:-1]}
for label in state.label_config.get_labels_by_name()],
"predictions": Util.get_table_string_from_csv(state.predictions_path),
"predictions_download_link": os.path.relpath(state.predictions_path, base_path)
}