import logging
import pandas as pd
from immuneML.caching.CacheHandler import CacheHandler
from immuneML.data_model.dataset.ReceptorDataset import ReceptorDataset
from immuneML.data_model.receptor.RegionType import RegionType
[docs]class TCRdistHelper:
[docs] @staticmethod
def compute_tcr_dist(dataset: ReceptorDataset, labels: list, cores: int = 1):
return CacheHandler.memo_by_params((('dataset_identifier', dataset.identifier), ("type", "TCRrep")),
lambda: TCRdistHelper._compute_tcr_dist(dataset, labels, cores))
@staticmethod
def _compute_tcr_dist(dataset: ReceptorDataset, labels: list, cores: int):
"""
Computes the tcrdist distances by creating a TCRrep object and calling compute_distances() function.
Parameters `ntrim` and `ctrim` in TCRrep object for CDR3 are adjusted to account for working with IMGT CDR3 definition if IMGT CDR3 was set
as region_type for the dataset upon importing. `deduplicate` parameter is set to False as we assume that we work with clones in immuneML,
and not individual receptors.
Args:
dataset: receptor dataset for which all pairwise distances between receptors will be computed
labels: a list of label names (e.g., specific epitopes) to be used for later classification or reports
cores: how many cpus to use for computation
Returns:
an instance of TCRrep object with computed pairwise distances between all receptors in the dataset
"""
from tcrdist.repertoire import TCRrep
df = TCRdistHelper.prepare_tcr_dist_dataframe(dataset, labels)
tcr_rep = TCRrep(cell_df=df, chains=['alpha', 'beta'], organism=dataset.labels["organism"], cpus=cores, deduplicate=False,
compute_distances=False)
if 'region_type' not in dataset.labels:
logging.warning(f"{TCRdistHelper.__name__}: Parameter 'region_type' was not set for dataset {dataset.name}, keeping default tcrdist "
f"values for parameters 'ntrim' and 'ctrim'. For more information, see tcrdist3 documentation. To avoid this warning, "
f"set the region type when importing the dataset.")
elif dataset.labels['region_type'] == RegionType.IMGT_CDR3:
tcr_rep.kargs_a['cdr3_a_aa']['ntrim'] = 2
tcr_rep.kargs_a['cdr3_a_aa']['ctrim'] = 1
tcr_rep.kargs_b['cdr3_b_aa']['ntrim'] = 2
tcr_rep.kargs_b['cdr3_b_aa']['ctrim'] = 1
elif dataset.labels['region_type'] != RegionType.IMGT_JUNCTION:
raise RuntimeError(f"{TCRdistHelper.__name__}: TCRdist metric can be computed only if IMGT_CDR3 or IMGT_JUNCTION are used as region "
f"types, but for dataset {dataset.name}, it is set to {dataset.labels['region_type']} instead.")
tcr_rep.compute_distances()
return tcr_rep
[docs] @staticmethod
def add_default_allele_to_v_gene(v_gene: str):
if v_gene is not None and "*" not in v_gene:
return f"{v_gene}*01"
else:
return v_gene
[docs] @staticmethod
def prepare_tcr_dist_dataframe(dataset: ReceptorDataset, labels: list) -> pd.DataFrame:
if len(labels) > 1:
raise NotImplementedError(f"TCRdist: multiple labels specified ({str(labels)[1:-1]}), but only single label binary class "
f"is currently supported in immuneML.")
label = labels[0]
subject, epitope, count, v_a_gene, j_a_gene, cdr3_a_aa, v_b_gene, j_b_gene, cdr3_b_aa, clone_id, cdr3_b_nucseq, cdr3_a_nucseq = \
[], [], [], [], [], [], [], [], [], [], [], []
for receptor in dataset.get_data():
subject.append(receptor.metadata["subject"] if "subject" in receptor.metadata else "sub" + receptor.identifier)
epitope.append(receptor.metadata[label])
count.append(receptor.get_chain("alpha").metadata.count
if receptor.get_chain("alpha").metadata.count == receptor.get_chain("beta").metadata.count
and receptor.get_chain("beta").metadata.count is not None else 1)
v_a_gene.append(TCRdistHelper.add_default_allele_to_v_gene(receptor.get_chain('alpha').metadata.v_allele))
j_a_gene.append(receptor.get_chain('alpha').metadata.j_allele)
cdr3_a_aa.append(receptor.get_chain('alpha').amino_acid_sequence)
cdr3_a_nucseq.append(receptor.get_chain("alpha").nucleotide_sequence)
v_b_gene.append(TCRdistHelper.add_default_allele_to_v_gene(receptor.get_chain('beta').metadata.v_allele))
j_b_gene.append(receptor.get_chain('beta').metadata.j_allele)
cdr3_b_aa.append(receptor.get_chain('beta').amino_acid_sequence)
cdr3_b_nucseq.append(receptor.get_chain("beta").nucleotide_sequence)
clone_id.append(receptor.identifier)
if all(item is not None for item in cdr3_a_nucseq) and all(item is not None for item in cdr3_b_nucseq):
return pd.DataFrame({"subject": subject, "epitope": epitope, "count": count, "v_a_gene": v_a_gene, "j_a_gene": j_a_gene,
"cdr3_a_aa": cdr3_a_aa, "v_b_gene": v_b_gene, "j_b_gene": j_b_gene, "cdr3_b_aa": cdr3_b_aa, "clone_id": clone_id,
"cdr3_b_nucseq": cdr3_b_nucseq, "cdr3_a_nucseq": cdr3_a_nucseq})
else:
return pd.DataFrame({"subject": subject, "epitope": epitope, "count": count, "v_a_gene": v_a_gene, "j_a_gene": j_a_gene,
"cdr3_a_aa": cdr3_a_aa, "v_b_gene": v_b_gene, "j_b_gene": j_b_gene, "cdr3_b_aa": cdr3_b_aa, "clone_id": clone_id})