import copy
import logging
import math
from pathlib import Path
from typing import List
import numpy as np
import pandas as pd
from immuneML.data_model.dataset.ElementDataset import ElementDataset
from immuneML.data_model.receptor.receptor_sequence.ReceptorSequence import ReceptorSequence
[docs]class SequenceDataset(ElementDataset):
"""A dataset class for sequence datasets (single chain). All the functionality is implemented in ElementDataset class, except creating a new
dataset and obtaining metadata."""
[docs] @classmethod
def build(cls, **kwargs):
return SequenceDataset(**kwargs)
[docs] @classmethod
def build_from_objects(cls, sequences: List[ReceptorSequence], file_size: int, path: Path, name: str = None):
file_count = math.ceil(len(sequences) / file_size)
file_names = [path / f"batch{''.join(['0' for i in range(1, len(str(file_count)) - len(str(index)) + 1)])}{index}.npy"
for index in range(1, file_count + 1)]
for index in range(file_count):
sequence_matrix = np.core.records.fromrecords([seq.get_record() for seq in sequences[index * file_size:(index + 1) * file_size]],
names=type(sequences[0]).get_record_names())
np.save(str(file_names[index]), sequence_matrix, allow_pickle=False)
return SequenceDataset(filenames=file_names, file_size=file_size, name=name)
def __init__(self, **kwargs):
super().__init__(**{**kwargs, **{'element_class_name': ReceptorSequence.__name__}})
[docs] def clone(self, keep_identifier: bool = False):
dataset = SequenceDataset(labels=self.labels, encoded_data=copy.deepcopy(self.encoded_data), filenames=copy.deepcopy(self.filenames),
file_size=self.file_size, name=self.name)
if keep_identifier:
dataset.identifier = self.identifier
dataset.element_ids = self.element_ids
return dataset