Source code for immuneML.dsl.ImmuneMLParser

# quality: peripheral
import datetime
import re
from pathlib import Path

import yaml
from yaml import MarkedYAMLError

from immuneML.dsl.InstructionParser import InstructionParser
from immuneML.dsl.OutputParser import OutputParser
from immuneML.dsl.definition_parsers.DefinitionParser import DefinitionParser
from immuneML.dsl.symbol_table.SymbolTable import SymbolTable
from immuneML.util.PathBuilder import PathBuilder


[docs]class ImmuneMLParser: """ Simple DSL parser from python dictionary or equivalent YAML for configuring repertoire / receptor_sequence classification in the (simulated) settings DSL example with hyper-parameter optimization: .. highlight:: yaml .. code-block:: yaml definitions: datasets: d1: format: MiXCR params: result_path: loaded_dataset/ region_type: IMGT_CDR3 path: path_to_files/ metadata_file: metadata.csv encodings: e1: KmerFrequency k: 3 e2: Word2Vec: vector_size: 16 context: sequence ml_methods: log_reg1: LogisticRegression: C: 0.001 reports: r1: SequenceLengthDistribution preprocessing_sequences: seq1: - filter_chain_B: ChainRepertoireFilter: keep_chain: A - filter_clonotype: ClonesPerRepertoireFilter: lower_limit: 1000 seq2: - filter_clonotype: ClonesPerRepertoireFilter: lower_limit: 500 - filter_chain_A: ChainRepertoireFilter: keep_chain: B instructions: inst1: type: TrainMLModel settings: - preprocessing: seq1 encoding: e1 ml_method: log_reg1 - preprocessing: seq2 encoding: e2 ml_method: log_reg1 assessment: split_strategy: random split_count: 1 training_percentage: 70 reports: data: [] data_splits: [] encoding: [] models: [] selection: split_strategy: k-fold split_count: 5 reports: data: [] data_splits: [r1] encoding: [] models: [] labels: - CD dataset: d1 strategy: GridSearch metrics: [accuracy, f1_micro] optimization_metric: balanced_accuracy reports: [] output: # this section can also be omitted, in that case output will be automatically HTML format: HTML # or None """
[docs] @staticmethod def parse_yaml_file(file_path: Path, result_path: Path = None, parse_func=None): try: with file_path.open("r") as file: workflow_specification = yaml.safe_load(file) ImmuneMLParser.check_keys(workflow_specification) except yaml.YAMLError as exc: problem_description = "\n--------------------------------------------------------------------------------\n" \ "There was a YAML formatting error in the supplied specification file. Please validate specification " \ "(you can use https://jsonformatter.org/yaml-validator) and try again." raise MarkedYAMLError(context=str(exc), problem=problem_description, problem_mark=f"The error was {exc.problem_mark}.") try: if parse_func is None: symbol_table, path = ImmuneMLParser.parse(workflow_specification, file_path, result_path) else: symbol_table, path = parse_func(workflow_specification, file_path, result_path) except KeyError as key_error: raise Exception(f"ImmuneMLParser: an error occurred during parsing the YAML specification. Missing key was '{key_error.args[0]}'. " f"For more details, refer to the log above and check the documentation.") from key_error return symbol_table, path
[docs] @staticmethod def check_keys(specs: dict): for key in specs.keys(): key_to_check = str(key) assert re.match(r'^[A-Za-z0-9_]+$', key_to_check), \ f"ImmuneMLParser: the keys in the specification can contain only letters, numbers and underscore. Error with key: {key}" if isinstance(specs[key], dict) and key not in ["column_mapping", "metadata_column_mapping"]: ImmuneMLParser.check_keys(specs[key])
[docs] @staticmethod def parse(workflow_specification: dict, file_path, result_path): symbol_table = SymbolTable() def_parser_output, specs_defs = DefinitionParser.parse(workflow_specification, symbol_table, result_path) symbol_table, specs_instructions = InstructionParser.parse(def_parser_output, result_path) app_output = OutputParser.parse(workflow_specification, symbol_table) path = ImmuneMLParser._output_specs(file_path=file_path, result_path=result_path, definitions=specs_defs, instructions=specs_instructions, output=app_output) return symbol_table, path
@staticmethod def _get_full_specs_filepath(file_path, result_path) -> Path: file_name = f"full_{file_path.stem}.yaml" if result_path is None: folder = file_path.absolute().parent return folder / file_name else: return result_path / file_name @staticmethod def _output_specs(file_path=None, result_path=None, definitions: dict = None, instructions: dict = None, output: dict = None) -> Path: filepath = ImmuneMLParser._get_full_specs_filepath(file_path, result_path) result = {"definitions": definitions, "instructions": instructions, "output": output} result = ImmuneMLParser._paths_to_strings_recursive(result) PathBuilder.build(filepath.parent) with filepath.open("w") as file: yaml.dump(result, file) print(f"{datetime.datetime.now()}: Full specification is available at {filepath}.\n", flush=True) return filepath @staticmethod def _paths_to_strings_recursive(specs): if isinstance(specs, Path): return specs.as_posix() elif isinstance(specs, dict): return {key: ImmuneMLParser._paths_to_strings_recursive(value) for key, value in specs.items()} elif isinstance(specs, list): return [ImmuneMLParser._paths_to_strings_recursive(item) for item in specs] else: return specs