from pathlib import Path
import pandas as pd
from immuneML.data_model.dataset.ReceptorDataset import ReceptorDataset
from immuneML.data_model.encoded_data.EncodedData import EncodedData
from immuneML.encodings.DatasetEncoder import DatasetEncoder
from immuneML.encodings.EncoderParams import EncoderParams
from immuneML.util.EncoderHelper import EncoderHelper
[docs]class TCRdistEncoder(DatasetEncoder):
"""
Encodes the given ReceptorDataset as a distance matrix between all receptors, where the distance is computed using TCRdist from the paper:
Dash P, Fiore-Gartland AJ, Hertz T, et al. Quantifiable predictive features define epitope-specific T cell receptor repertoires.
Nature. 2017; 547(7661):89-93. `doi:10.1038/nature22383 <https://www.nature.com/articles/nature22383>`_.
For the implementation, `TCRdist3 <https://tcrdist3.readthedocs.io/en/latest/>`_ library was used (source code available
`here <https://github.com/kmayerb/tcrdist3>`_).
Arguments:
cores (int): number of processes to use for the computation
YAML specification:
.. indent with spaces
.. code-block:: yaml
my_tcr_dist_enc: # user-defined name
TCRdist:
cores: 4
"""
def __init__(self, cores: int, name: str = None):
self.cores = cores
self.name = name
self.distance_matrix = None
self.context = None
[docs] @staticmethod
def build_object(dataset, **params):
if isinstance(dataset, ReceptorDataset):
return TCRdistEncoder(**params)
else:
raise ValueError("TCRdistEncoder is not defined for dataset types which are not ReceptorDataset.")
[docs] def set_context(self, context: dict):
self.context = context
return self
[docs] def encode(self, dataset, params: EncoderParams):
train_receptor_ids = EncoderHelper.prepare_training_ids(dataset, params)
if params.learn_model:
self._build_tcr_dist_matrix(dataset, params.label_config.get_labels_by_name())
distance_matrix = self.distance_matrix.loc[dataset.get_example_ids(), train_receptor_ids]
labels = self._build_labels(dataset, params) if params.encode_labels else None
encoded_dataset = dataset.clone()
encoded_dataset.encoded_data = EncodedData(examples=distance_matrix, labels=labels, example_ids=distance_matrix.index.values,
encoding=TCRdistEncoder.__name__)
return encoded_dataset
def _build_tcr_dist_matrix(self, dataset: ReceptorDataset, label_names):
from immuneML.util.TCRdistHelper import TCRdistHelper
current_dataset = dataset if self.context is None or "dataset" not in self.context else self.context["dataset"]
tcr_rep = TCRdistHelper.compute_tcr_dist(current_dataset, label_names, self.cores)
self.distance_matrix = pd.DataFrame(tcr_rep.pw_alpha + tcr_rep.pw_beta, index=tcr_rep.clone_df.clone_id.values,
columns=tcr_rep.clone_df.clone_id.values)
def _build_labels(self, dataset: ReceptorDataset, params: EncoderParams) -> dict:
labels = {label: [] for label in params.label_config.get_labels_by_name()}
for receptor in dataset.get_data():
for label_name in labels.keys():
labels[label_name].append(receptor.metadata[label_name])
return labels
[docs] @staticmethod
def export_encoder(path: Path, encoder) -> str:
encoder_file = DatasetEncoder.store_encoder(encoder, path / "encoder.pickle")
return encoder_file