Source code for immuneML.hyperparameter_optimization.core.HPSelection

import datetime
from pathlib import Path

from immuneML.environment.Label import Label
from immuneML.environment.LabelConfiguration import LabelConfiguration
from immuneML.hyperparameter_optimization.HPSetting import HPSetting
from immuneML.hyperparameter_optimization.config.SplitType import SplitType
from immuneML.hyperparameter_optimization.core.HPUtil import HPUtil
from immuneML.hyperparameter_optimization.states.HPSelectionState import HPSelectionState
from immuneML.hyperparameter_optimization.states.TrainMLModelState import TrainMLModelState
from immuneML.util.PathBuilder import PathBuilder
from immuneML.workflows.instructions.MLProcess import MLProcess


[docs]class HPSelection:
[docs] @staticmethod def update_split_count(state: TrainMLModelState, train_val_dataset): if state.selection.split_strategy == SplitType.LOOCV: state.selection.split_count = train_val_dataset.get_example_count() return state
[docs] @staticmethod def run_selection(state: TrainMLModelState, train_val_dataset, current_path: Path, split_index: int) -> TrainMLModelState: path = HPSelection.create_selection_path(state, current_path) state = HPSelection.update_split_count(state, train_val_dataset) train_datasets, val_datasets = HPUtil.split_data(train_val_dataset, state.selection, path, state.label_configuration) n_labels = state.label_configuration.get_label_count() for idx, label in enumerate(state.label_configuration.get_label_objects()): print(f"{datetime.datetime.now()}: Hyperparameter optimization: running the inner loop of nested CV: selection for label {label.name} " f"(label {idx + 1} / {n_labels}).\n", flush=True) selection_state = HPSelectionState(train_datasets, val_datasets, path, state.hp_strategy) state.assessment_states[split_index].label_states[label.name].selection_state = selection_state hp_setting = selection_state.hp_strategy.generate_next_setting() while hp_setting is not None: performance = HPSelection.evaluate_hp_setting(state, hp_setting, train_datasets, val_datasets, path, label, split_index) hp_setting = selection_state.hp_strategy.generate_next_setting(hp_setting, performance) HPUtil.run_selection_reports(state, train_val_dataset, train_datasets, val_datasets, selection_state) print(f"{datetime.datetime.now()}: Hyperparameter optimization: running the inner loop of nested CV: completed selection for " f"label {label.name} (label {idx + 1} / {n_labels}).\n", flush=True) return state
[docs] @staticmethod def evaluate_hp_setting(state: TrainMLModelState, hp_setting: HPSetting, train_datasets: list, val_datasets: list, current_path: Path, label: Label, assessment_split_index: int): performances = [] for index in range(state.selection.split_count): performance = HPSelection.run_setting(state, hp_setting, train_datasets[index], val_datasets[index], index + 1, current_path / f"split_{index + 1}" / f"{label}_{hp_setting.get_key()}", label, assessment_split_index) performances.append(performance) return HPUtil.get_average_performance(performances)
[docs] @staticmethod def run_setting(state: TrainMLModelState, hp_setting, train_dataset, val_dataset, split_index: int, current_path: Path, label: Label, assessment_index: int): hp_item = MLProcess(train_dataset=train_dataset, test_dataset=val_dataset, encoding_reports=state.selection.reports.encoding_reports.values(), label_config=LabelConfiguration([label]), report_context=state.context, number_of_processes=state.number_of_processes, metrics=state.metrics, optimization_metric=state.optimization_metric, ml_reports=state.selection.reports.model_reports.values(), label=label, path=current_path, hp_setting=hp_setting)\ .run(split_index) state.assessment_states[assessment_index].label_states[label.name].selection_state.hp_items[hp_setting.get_key()].append(hp_item) return hp_item.performance[state.optimization_metric.name.lower()] if hp_item.performance is not None else None
[docs] @staticmethod def create_selection_path(state: TrainMLModelState, current_path: Path) -> Path: path = current_path / f"selection_{state.selection.split_strategy.name.lower()}" PathBuilder.build(path) return path