Source code for immuneML.ml_methods.pytorch_implementations.PyTorchLogisticRegression
import torch
[docs]class PyTorchLogisticRegression(torch.nn.Module):
def __init__(self, in_features: int, zero_abundance_weight_init: bool):
super().__init__()
self.linear = torch.nn.Linear(in_features, 1, bias=True)
with torch.no_grad():
self.linear.bias.zero_()
self.linear.weight.normal_(mean=0, std=1/in_features)
if zero_abundance_weight_init:
self.linear.weight[:, -1].fill_(0.0)