import os
from pathlib import Path
from immuneML.environment.EnvironmentSettings import EnvironmentSettings
from immuneML.ml_methods.util.Util import Util as MLUtil
from immuneML.presentation.TemplateParser import TemplateParser
from immuneML.presentation.html.Util import Util
from immuneML.util.PathBuilder import PathBuilder
from immuneML.util.StringHelper import StringHelper
from immuneML.workflows.instructions.dataset_generation.DatasetExportState import DatasetExportState
[docs]class DatasetExportHTMLBuilder:
CSS_PATH = EnvironmentSettings.html_templates_path / "css/custom.css"
[docs] @staticmethod
def build(state: DatasetExportState) -> Path:
"""
Function that builds the HTML files based on the Simulation state.
Arguments:
state: SimulationState object including all details of the Simulation instruction
Returns:
path to the main HTML file (which is located under state.result_path)
"""
base_path = PathBuilder.build(state.result_path / "../HTML_output/")
html_map = DatasetExportHTMLBuilder.make_html_map(state, base_path)
result_file = base_path / f"DatasetExport_{state.name}.html"
TemplateParser.parse(template_path=EnvironmentSettings.html_templates_path / "DatasetExport.html",
template_map=html_map, result_path=result_file)
return result_file
[docs] @staticmethod
def make_html_map(state: DatasetExportState, base_path: Path) -> dict:
html_map = {
"css_style": Util.get_css_content(DatasetExportHTMLBuilder.CSS_PATH),
"name": state.name,
'immuneML_version': MLUtil.get_immuneML_version(),
"full_specs": Util.get_full_specs_path(base_path),
"datasets": [
{
"dataset_name": dataset.name,
"dataset_type": StringHelper.camel_case_to_word_string(type(dataset).__name__),
"dataset_size": f"{dataset.get_example_count()} {type(dataset).__name__.replace('Dataset', 's').lower()}",
"labels": [{"label_name": label} for label in dataset.get_label_names()],
"preprocessing_sequence": [
{
"preprocessing_name": preprocessing.__class__.__name__,
"preprocessing_params": ", ".join([f"{key}: {value}" for key, value in vars(preprocessing).items()])
} for preprocessing in state.preprocessing_sequence
] if state.preprocessing_sequence is not None else [],
"show_preprocessing": state.preprocessing_sequence is not None and len(state.preprocessing_sequence) > 0,
"formats": [
{
"format_name": format_name,
"dataset_download_link": os.path.relpath(path=Util.make_downloadable_zip(state.result_path, state.paths[dataset.name][format_name]),
start=base_path)
} for format_name in state.formats
]
} for dataset in state.datasets
]
}
return html_map