Source code for immuneML.reports.multi_dataset_reports.PerformanceOverview

import logging
from typing import List, Tuple

import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
from sklearn import metrics
from sklearn.metrics import precision_recall_curve

from immuneML.environment.Constants import Constants
from immuneML.environment.Label import Label
from immuneML.reports.ReportOutput import ReportOutput
from immuneML.reports.ReportResult import ReportResult
from immuneML.reports.multi_dataset_reports.MultiDatasetReport import MultiDatasetReport
from immuneML.util.PathBuilder import PathBuilder


[docs]class PerformanceOverview(MultiDatasetReport): """ PerformanceOverview report creates an ROC plot and precision-recall plot for optimal trained models on multiple datasets. The labels on the plots are the names of the datasets, so it might be good to have user-friendly names when defining datasets that are still a combination of letters, numbers and the underscore sign. This report can be used only with MultiDatasetBenchmarkTool as it will plot ROC and PR curve for trained models across datasets. Also, it requires the task to be immune repertoire classification and cannot be used for receptor or sequence classification. Furthermore, it uses predictions on the test dataset to assess the performance and plot the curves. If the parameter refit_optimal_model is set to True, all data will be used to fit the optimal model, so there will not be a test dataset which can be used to assess performance and the report will not be generated. If datasets have the same number of examples, the baseline PR curve will be plotted as described in this publication: Saito T, Rehmsmeier M. The Precision-Recall Plot Is More Informative than the ROC Plot When Evaluating Binary Classifiers on Imbalanced Datasets. PLOS ONE. 2015;10(3):e0118432. doi:10.1371/journal.pone.0118432 If the datasets have different number of examples, the baseline PR curve will not be plotted. YAML specification: .. indent with spaces .. code-block:: yaml reports: my_performance_report: PerformanceOverview """
[docs] @classmethod def build_object(cls, **kwargs): return PerformanceOverview(**kwargs)
def _generate(self) -> ReportResult: self.result_path = PathBuilder.build(self.result_path / self.name) assert all(self.instruction_states[0].label_configuration.get_labels_by_name() == state.label_configuration.get_labels_by_name() and self.instruction_states[0].label_configuration.get_label_values( self.instruction_states[0].label_configuration.get_labels_by_name()[0]) == state.label_configuration.get_label_values(state.label_configuration.get_labels_by_name()[0]) for state in self.instruction_states), \ "PerformanceOverview: there is a difference in labels between instructions, the plots cannot be created." assert len(self.instruction_states[0].label_configuration.get_labels_by_name()) == 1, \ 'PerformanceOverview: multiple labels were provided, but only one can be used in this report.' assert all(state.refit_optimal_model is False for state in self.instruction_states), \ f"{PerformanceOverview.__name__}: no test datasets were available to assess the performance of optimal models as they were refitted on " \ f"the full datasets. No reports will be generated." label = self.instruction_states[0].label_configuration.get_label_objects()[0] optimal_hp_items = [list(state.optimal_hp_items.values())[0] for state in self.instruction_states] colors = px.colors.sequential.Viridis[::2][::-1] figure_auc, table_aucs = self.plot_roc(optimal_hp_items, label, colors) figure_pr, table_pr = self.plot_precision_recall(optimal_hp_items, label, colors) return ReportResult(name=self.name, info="A ROC plot and a precision-recall plot for optimal trained models on multiple datasets.", output_figures=[figure_auc, figure_pr], output_tables=table_aucs + table_pr)
[docs] def plot_roc(self, optimal_hp_items, label: Label, colors) -> Tuple[ReportOutput, List[ReportOutput]]: report_data_outputs = [] figure = go.Figure() figure.add_trace(go.Scatter(x=[0, 1], y=[0, 1], mode='lines', name='baseline', line=dict(color=Constants.PLOTLY_BLACK, dash='dash'), hoverinfo="skip")) for index, item in enumerate(optimal_hp_items): if item.test_predictions_path is None: logging.warning(f'{PerformanceOverview.__name__}: there are no test predictions for dataset ' f'{self.instruction_states[index].dataset.name}, skipping this dataset when generating performance overview...') else: df = pd.read_csv(item.test_predictions_path) true_class = df[f"{label.name}_true_class"].values predicted_class = df[f"{label.name}_{label.positive_class}_proba"].values fpr, tpr, _ = metrics.roc_curve(y_true=true_class, y_score=predicted_class) auc = metrics.roc_auc_score(true_class, predicted_class) name = self.instruction_states[index].dataset.name + f' (AUC = {round(auc, 2)})' figure.add_trace(go.Scatter(x=fpr, y=tpr, mode='lines', name=name, marker=dict(color=colors[index], line=dict(width=3)), hoverinfo="skip")) data_path = self.result_path / f"roc_curve_data_{name}.csv" pd.DataFrame({"FPR": fpr, "TPR": tpr}).to_csv(data_path, index=False) report_data_outputs.append(ReportOutput(data_path, f'ROC curve data for dataset {name} (csv)')) figure_path = self.result_path / "roc_curve.html" figure.update_layout(template='plotly_white', xaxis_title='false positive rate', yaxis_title='true positive rate') figure.write_html(str(figure_path)) return ReportOutput(figure_path, 'ROC curve'), report_data_outputs
[docs] def plot_precision_recall(self, optimal_hp_items: list, label: Label, colors): report_data_outputs = [] figure = go.Figure() for index, item in enumerate(optimal_hp_items): df = pd.read_csv(item.test_predictions_path) true_class = df[f"{label.name}_true_class"].values predicted_proba = df[f"{label.name}_{label.positive_class}_proba"].values precision, recall, _ = precision_recall_curve(y_true=true_class, probas_pred=predicted_proba) name = self.instruction_states[index].dataset.name figure.add_trace(go.Scatter(x=recall, y=precision, mode='lines', name=name, marker=dict(color=colors[index], line=dict(width=3)), hoverinfo="skip")) data_path = self.result_path / f"precision_recall_data_{name}.csv" pd.DataFrame({"precision": precision, "recall": recall}).to_csv(data_path, index=False) report_data_outputs.append(ReportOutput(data_path, f'precision-recall curve data for dataset {name}')) figure_path = self.result_path / "precision_recall_curve.html" figure.update_layout(template='plotly_white', xaxis_title="recall", yaxis_title="precision") figure.write_html(str(figure_path)) return ReportOutput(figure_path, 'precision-recall curve'), report_data_outputs