# quality: gold
import abc
import random
from pathlib import Path
from immuneML.data_model.receptor.receptor_sequence.ReceptorSequence import ReceptorSequence
from immuneML.data_model.repertoire.Repertoire import Repertoire
from immuneML.simulation.sequence_implanting.SequenceImplantingStrategy import SequenceImplantingStrategy
from immuneML.simulation.signal_implanting_strategy.ImplantingComputation import ImplantingComputation
[docs]class SignalImplantingStrategy(metaclass=abc.ABCMeta):
def __init__(self, implanting: SequenceImplantingStrategy = None, sequence_position_weights: dict = None,
implanting_computation: ImplantingComputation = None):
self.sequence_implanting_strategy = implanting
self.sequence_position_weights = sequence_position_weights
self.compute_implanting = implanting_computation
[docs] @abc.abstractmethod
def implant_in_repertoire(self, repertoire: Repertoire, repertoire_implanting_rate: float, signal, path: Path):
pass
[docs] def implant_in_sequence(self, sequence: ReceptorSequence, signal, motif=None, chain=None) -> ReceptorSequence:
assert self.sequence_implanting_strategy is not None, \
"SignalImplanting: set SequenceImplantingStrategy in SignalImplanting object before calling implant_in_sequence method."
if motif is None:
motif = random.choice(signal.motifs)
motif_instance = motif.instantiate_motif(chain)
new_sequence = self.sequence_implanting_strategy.implant(sequence=sequence,
signal={"signal_id": signal.id,
"motif_id": motif.identifier,
"motif_instance": motif_instance},
sequence_position_weights=self.sequence_position_weights)
return new_sequence
[docs] @abc.abstractmethod
def implant_in_receptor(self, receptor, signal, is_noise: bool):
pass