Source code for immuneML.util.TCRdistHelper

import logging

import pandas as pd

from immuneML.caching.CacheHandler import CacheHandler
from immuneML.data_model.dataset.ReceptorDataset import ReceptorDataset
from immuneML.data_model.receptor.RegionType import RegionType


[docs]class TCRdistHelper:
[docs] @staticmethod def compute_tcr_dist(dataset: ReceptorDataset, label_names: list, cores: int = 1): return CacheHandler.memo_by_params((('dataset_identifier', dataset.identifier), ("type", "TCRrep")), lambda: TCRdistHelper._compute_tcr_dist(dataset, label_names, cores))
@staticmethod def _compute_tcr_dist(dataset: ReceptorDataset, label_names: list, cores: int): """ Computes the tcrdist distances by creating a TCRrep object and calling compute_distances() function. Parameters `ntrim` and `ctrim` in TCRrep object for CDR3 are adjusted to account for working with IMGT CDR3 definition if IMGT CDR3 was set as region_type for the dataset upon importing. `deduplicate` parameter is set to False as we assume that we work with clones in immuneML, and not individual receptors. Args: dataset: receptor dataset for which all pairwise distances between receptors will be computed label_names: a list of label names (e.g., specific epitopes) to be used for later classification or reports cores: how many cpus to use for computation Returns: an instance of TCRrep object with computed pairwise distances between all receptors in the dataset """ from tcrdist.repertoire import TCRrep df = TCRdistHelper.prepare_tcr_dist_dataframe(dataset, label_names) tcr_rep = TCRrep(cell_df=df, chains=['alpha', 'beta'], organism=dataset.labels["organism"], cpus=cores, deduplicate=False, compute_distances=False) if 'region_type' not in dataset.labels: logging.warning(f"{TCRdistHelper.__name__}: Parameter 'region_type' was not set for dataset {dataset.name}, keeping default tcrdist " f"values for parameters 'ntrim' and 'ctrim'. For more information, see tcrdist3 documentation. To avoid this warning, " f"set the region type when importing the dataset.") elif dataset.labels['region_type'] == RegionType.IMGT_CDR3: tcr_rep.kargs_a['cdr3_a_aa']['ntrim'] = 2 tcr_rep.kargs_a['cdr3_a_aa']['ctrim'] = 1 tcr_rep.kargs_b['cdr3_b_aa']['ntrim'] = 2 tcr_rep.kargs_b['cdr3_b_aa']['ctrim'] = 1 elif dataset.labels['region_type'] != RegionType.IMGT_JUNCTION: raise RuntimeError(f"{TCRdistHelper.__name__}: TCRdist metric can be computed only if IMGT_CDR3 or IMGT_JUNCTION are used as region " f"types, but for dataset {dataset.name}, it is set to {dataset.labels['region_type']} instead.") tcr_rep.compute_distances() return tcr_rep
[docs] @staticmethod def add_default_allele_to_v_gene(v_gene: str): if v_gene is not None and "*" not in v_gene: return f"{v_gene}*01" else: return v_gene
[docs] @staticmethod def prepare_tcr_dist_dataframe(dataset: ReceptorDataset, label_names: list) -> pd.DataFrame: if len(label_names) > 1: raise NotImplementedError(f"TCRdist: multiple labels specified ({str(label_names)[1:-1]}), but only single label binary class " f"is currently supported in immuneML.") label_name = label_names[0] subject, epitope, count, v_a_gene, j_a_gene, cdr3_a_aa, v_b_gene, j_b_gene, cdr3_b_aa, clone_id, cdr3_b_nucseq, cdr3_a_nucseq = \ [], [], [], [], [], [], [], [], [], [], [], [] for receptor in dataset.get_data(): subject.append(receptor.metadata["subject"] if "subject" in receptor.metadata else "sub" + receptor.identifier) epitope.append(receptor.metadata[label_name]) count.append(receptor.get_chain("alpha").metadata.count if receptor.get_chain("alpha").metadata.count == receptor.get_chain("beta").metadata.count and receptor.get_chain("beta").metadata.count is not None else 1) v_a_gene.append(TCRdistHelper.add_default_allele_to_v_gene(receptor.get_chain('alpha').metadata.v_allele)) j_a_gene.append(receptor.get_chain('alpha').metadata.j_allele) cdr3_a_aa.append(receptor.get_chain('alpha').amino_acid_sequence) cdr3_a_nucseq.append(receptor.get_chain("alpha").nucleotide_sequence) v_b_gene.append(TCRdistHelper.add_default_allele_to_v_gene(receptor.get_chain('beta').metadata.v_allele)) j_b_gene.append(receptor.get_chain('beta').metadata.j_allele) cdr3_b_aa.append(receptor.get_chain('beta').amino_acid_sequence) cdr3_b_nucseq.append(receptor.get_chain("beta").nucleotide_sequence) clone_id.append(receptor.identifier) if all(item is not None for item in cdr3_a_nucseq) and all(item is not None for item in cdr3_b_nucseq): return pd.DataFrame({"subject": subject, "epitope": epitope, "count": count, "v_a_gene": v_a_gene, "j_a_gene": j_a_gene, "cdr3_a_aa": cdr3_a_aa, "v_b_gene": v_b_gene, "j_b_gene": j_b_gene, "cdr3_b_aa": cdr3_b_aa, "clone_id": clone_id, "cdr3_b_nucseq": cdr3_b_nucseq, "cdr3_a_nucseq": cdr3_a_nucseq}) else: return pd.DataFrame({"subject": subject, "epitope": epitope, "count": count, "v_a_gene": v_a_gene, "j_a_gene": j_a_gene, "cdr3_a_aa": cdr3_a_aa, "v_b_gene": v_b_gene, "j_b_gene": j_b_gene, "cdr3_b_aa": cdr3_b_aa, "clone_id": clone_id})