immuneML.hyperparameter_optimization.core package¶
Submodules¶
immuneML.hyperparameter_optimization.core.HPAssessment module¶
-
class
immuneML.hyperparameter_optimization.core.HPAssessment.
HPAssessment
[source]¶ Bases:
object
-
static
reeval_on_assessment_split
(state, train_val_dataset: immuneML.data_model.dataset.Dataset.Dataset, test_dataset: immuneML.data_model.dataset.Dataset.Dataset, hp_setting: immuneML.hyperparameter_optimization.HPSetting.HPSetting, path: pathlib.Path, label: str, split_index: int) → immuneML.ml_methods.MLMethod.MLMethod[source]¶ retrain model for specific label, assessment split and hp_setting
-
static
run_assessment
(state: immuneML.hyperparameter_optimization.states.TrainMLModelState.TrainMLModelState) → immuneML.hyperparameter_optimization.states.TrainMLModelState.TrainMLModelState[source]¶
-
static
run_assessment_split
(state, train_val_dataset, test_dataset, split_index: int, n_splits)[source]¶ run inner CV loop (selection) and retrain on the full train_val_dataset after optimal model is chosen
-
static
run_assessment_split_per_label
(state: immuneML.hyperparameter_optimization.states.TrainMLModelState.TrainMLModelState, split_index: int)[source]¶ iterate through labels and hp_settings and retrain all models
-
static
immuneML.hyperparameter_optimization.core.HPSelection module¶
-
class
immuneML.hyperparameter_optimization.core.HPSelection.
HPSelection
[source]¶ Bases:
object
-
static
create_selection_path
(state: immuneML.hyperparameter_optimization.states.TrainMLModelState.TrainMLModelState, current_path: pathlib.Path) → pathlib.Path[source]¶
-
static
evaluate_hp_setting
(state: immuneML.hyperparameter_optimization.states.TrainMLModelState.TrainMLModelState, hp_setting: immuneML.hyperparameter_optimization.HPSetting.HPSetting, train_datasets: list, val_datasets: list, current_path: pathlib.Path, label: str, assessment_split_index: int)[source]¶
-
static
run_selection
(state: immuneML.hyperparameter_optimization.states.TrainMLModelState.TrainMLModelState, train_val_dataset, current_path: pathlib.Path, split_index: int) → immuneML.hyperparameter_optimization.states.TrainMLModelState.TrainMLModelState[source]¶
-
static
run_setting
(state: immuneML.hyperparameter_optimization.states.TrainMLModelState.TrainMLModelState, hp_setting, train_dataset, val_dataset, split_index: int, current_path: pathlib.Path, label: str, assessment_index: int)[source]¶
-
static
update_split_count
(state: immuneML.hyperparameter_optimization.states.TrainMLModelState.TrainMLModelState, train_val_dataset)[source]¶
-
static
immuneML.hyperparameter_optimization.core.HPUtil module¶
-
class
immuneML.hyperparameter_optimization.core.HPUtil.
HPUtil
[source]¶ Bases:
object
-
static
assess_performance
(method, metrics, optimization_metric, dataset, split_index, current_path: pathlib.Path, test_predictions_path: pathlib.Path, label: str, ml_score_path: pathlib.Path)[source]¶
-
static
encode_dataset
(dataset, hp_setting: immuneML.hyperparameter_optimization.HPSetting.HPSetting, path: pathlib.Path, learn_model: bool, context: dict, number_of_processes: int, label_configuration: immuneML.environment.LabelConfiguration.LabelConfiguration, encode_labels: bool = True, store_encoded_data: bool = False)[source]¶
-
static
preprocess_dataset
(dataset: immuneML.data_model.dataset.Dataset.Dataset, preproc_sequence: list, path: pathlib.Path) → immuneML.data_model.dataset.Dataset.Dataset[source]¶
-
static
run_hyperparameter_reports
(state: immuneML.hyperparameter_optimization.states.TrainMLModelState.TrainMLModelState, path: pathlib.Path) → List[immuneML.reports.ReportResult.ReportResult][source]¶
-
static
run_selection_reports
(state: immuneML.hyperparameter_optimization.states.TrainMLModelState.TrainMLModelState, dataset, train_datasets: list, val_datasets: list, selection_state: immuneML.hyperparameter_optimization.states.HPSelectionState.HPSelectionState)[source]¶
-
static
split_data
(dataset: immuneML.data_model.dataset.Dataset.Dataset, split_config: immuneML.hyperparameter_optimization.config.SplitConfig.SplitConfig, path: pathlib.Path, label_config: immuneML.environment.LabelConfiguration.LabelConfiguration) → tuple[source]¶
-
static
train_method
(label: str, dataset, hp_setting: immuneML.hyperparameter_optimization.HPSetting.HPSetting, path: pathlib.Path, train_predictions_path, ml_details_path, cores_for_training, optimization_metric) → immuneML.ml_methods.MLMethod.MLMethod[source]¶
-
static