immuneML.reports package
Subpackages
- immuneML.reports.data_reports package
- Submodules
- immuneML.reports.data_reports.CytoscapeNetworkExporter module
- immuneML.reports.data_reports.DataReport module
- immuneML.reports.data_reports.GLIPH2Exporter module
- immuneML.reports.data_reports.ReceptorDatasetOverview module
- immuneML.reports.data_reports.SequenceLengthDistribution module
- immuneML.reports.data_reports.SimpleDatasetOverview module
- Module contents
- immuneML.reports.encoding_reports package
- Submodules
- immuneML.reports.encoding_reports.DesignMatrixExporter module
- immuneML.reports.encoding_reports.EncodingReport module
- immuneML.reports.encoding_reports.FeatureComparison module
- immuneML.reports.encoding_reports.FeatureDistribution module
- immuneML.reports.encoding_reports.FeatureReport module
- immuneML.reports.encoding_reports.FeatureValueBarplot module
- immuneML.reports.encoding_reports.Matches module
- immuneML.reports.encoding_reports.RelevantSequenceExporter module
- Module contents
- immuneML.reports.ml_reports package
- Submodules
- immuneML.reports.ml_reports.CoefficientPlottingSetting module
- immuneML.reports.ml_reports.CoefficientPlottingSettingList module
- immuneML.reports.ml_reports.Coefficients module
- immuneML.reports.ml_reports.ConfounderAnalysis module
- immuneML.reports.ml_reports.DeepRCMotifDiscovery module
- immuneML.reports.ml_reports.KernelSequenceLogo module
- immuneML.reports.ml_reports.MLReport module
- immuneML.reports.ml_reports.MotifSeedRecovery module
- immuneML.reports.ml_reports.ROCCurve module
- immuneML.reports.ml_reports.SequenceAssociationLikelihood module
- immuneML.reports.ml_reports.TCRdistMotifDiscovery module
- immuneML.reports.ml_reports.TrainingPerformance module
- Module contents
- immuneML.reports.multi_dataset_reports package
- immuneML.reports.train_ml_model_reports package
- Submodules
- immuneML.reports.train_ml_model_reports.CVFeaturePerformance module
- immuneML.reports.train_ml_model_reports.DiseaseAssociatedSequenceCVOverlap module
- immuneML.reports.train_ml_model_reports.MLSettingsPerformance module
- immuneML.reports.train_ml_model_reports.MLSubseqPerformance module
- immuneML.reports.train_ml_model_reports.ROCCurveSummary module
- immuneML.reports.train_ml_model_reports.ReferenceSequenceOverlap module
- immuneML.reports.train_ml_model_reports.TrainMLModelReport module
- Module contents
Submodules
immuneML.reports.PlotlyUtil module
- class immuneML.reports.PlotlyUtil.PlotlyUtil[source]
Bases:
object
- static add_single_axis_labels(figure, x_label, y_label, x_label_position, y_label_position)[source]
Takes a multi-facet plotly figure and replaces the repetitive x and y axis labels with single axis labels in the form of annotations.
- Parameters
figure – a plotly figure
x_label – the x label text
y_label – the y label text
x_label_position – the position of the new axis labels relative to the respective axes
y_label_position – the position of the new axis labels relative to the respective axes
- Returns
an updated plotly figure
immuneML.reports.Report module
- class immuneML.reports.Report.Report(name: Optional[str] = None, number_of_processes: int = 1)[source]
Bases:
object
This class defines what report classes should look like: they all have to inherit this class and implement the abstract methods: build_object() from parameters and generate() the report once all properties are set (in immuneML this will be taken care of by the instructions). If there are any prerequisites needed to run the report (e.g., check if all parameter values are properly set), the check_prerequisites function should be overwritten to reflect that and determine if everything is set before generate() is run. See specific functions for more details.
- abstract classmethod build_object(**kwargs)[source]
Creates the object of the subclass of the Report class from the parameters so that it can be used in the analysis. Depending on the type of the report, the parameters provided here will be provided in parsing time, while the other necessary parameters (e.g., subset of the data from which the report should be created) will be provided at runtime. For more details, see specific direct subclasses of this class, describing different types of reports.
- Parameters
**kwargs – keyword arguments that will be provided by users in the specification (if immuneML is used as a command line tool) or in the dictionary when calling the method from the code, and which should be used to create the report object
- Returns
the object of the appropriate report class
- check_prerequisites() bool [source]
Checks prerequisites for the generation of the report of specific class (e.g., if the class of the MLMethod instance is the one required by the report, if the data has been encoded to make a report of encoded dataset). In the instructions in immuneML, this function is used to determine whether to call generate_report() in the specific situation. Each report subclass has its own set of prerequisites. If the report cannot be run, the information on this will be logged and the report skipped in the specific situation. No error will be raised. See subclasses of the class
Instruction
for more information on how the reports are executed.- Returns
boolean value True if the prerequisites are o.k., and False otherwise.
- generate_report() immuneML.reports.ReportResult.ReportResult [source]
Generates a report of the given class if the prerequisites are satisfied. It handles all exceptions so that if there is an error while generating a report, the execution of the rest of the code (e.g., more time-expensive parts, like instructions) is not influenced.
- Returns
ReportResult object which encapsulates all outputs (figure, table, and text files) so that they can be conveniently linked to in the final output of instructions
- set_context(context: dict)[source]
Context is a dictionary with information that is accessible from the level of instruction and can be used to precompute certain values that can be later reused to speed up the generation of the subsequent reports of the same time. For instance, if one should compute the distance between all repertoires based on the sequence content, it is possible to store the full dataset in the context, compute the distances on the full dataset and then only extract the distances need for the current dataset in the later calls (e.g., when training dataset is passed as input). Only some reports will need this functionality.
Warning: It is very important to be careful when using the context to avoid leaking the information between training and test datasets.
- Parameters
context (dict) – a dictionary where the values are variables that are typically only available on the top-level of the instruction, and which are used to precompute results in order to speed up subsequent generation of the same report on subsets of those values.
- Returns
self - so that it can be chained with the other function calls
immuneML.reports.ReportOutput module
immuneML.reports.ReportResult module
- class immuneML.reports.ReportResult.ReportResult(name: str = None, info: str = None, output_figures: List[immuneML.reports.ReportOutput.ReportOutput] = <factory>, output_tables: List[immuneML.reports.ReportOutput.ReportOutput] = <factory>, output_text: List[immuneML.reports.ReportOutput.ReportOutput] = <factory>)[source]
Bases:
object
- info: str = None
- name: str = None
- output_figures: List[immuneML.reports.ReportOutput.ReportOutput]
- output_tables: List[immuneML.reports.ReportOutput.ReportOutput]
- output_text: List[immuneML.reports.ReportOutput.ReportOutput]
immuneML.reports.ReportUtil module
- class immuneML.reports.ReportUtil.ReportUtil[source]
Bases:
object
- static run_ML_reports(train_dataset: immuneML.data_model.dataset.Dataset.Dataset, test_dataset: immuneML.data_model.dataset.Dataset.Dataset, method: immuneML.ml_methods.MLMethod.MLMethod, reports: List[immuneML.reports.ml_reports.MLReport.MLReport], path: pathlib.Path, hp_setting: immuneML.hyperparameter_optimization.HPSetting.HPSetting, label: immuneML.environment.Label.Label, number_of_processes: int = 1, context: Optional[dict] = None) List[immuneML.reports.ReportResult.ReportResult] [source]
- static run_data_reports(dataset: immuneML.data_model.dataset.Dataset.Dataset, reports: List[immuneML.reports.data_reports.DataReport.DataReport], path: pathlib.Path, number_of_processes: int = 1, context: Optional[dict] = None)[source]
- static run_encoding_reports(dataset: immuneML.data_model.dataset.Dataset.Dataset, reports: List[immuneML.reports.encoding_reports.EncodingReport.EncodingReport], path: pathlib.Path, number_of_processes: int = 1, context: Optional[dict] = None) List[immuneML.reports.ReportResult.ReportResult] [source]