immuneML.workflows.steps package¶
Subpackages¶
- immuneML.workflows.steps.data_splitter package
- Submodules
- immuneML.workflows.steps.data_splitter.DataSplitter module
- immuneML.workflows.steps.data_splitter.DataSplitterParams module
- immuneML.workflows.steps.data_splitter.LeaveOneOutSplitter module
- immuneML.workflows.steps.data_splitter.ManualSplitter module
- immuneML.workflows.steps.data_splitter.Util module
- Module contents
Submodules¶
immuneML.workflows.steps.DataEncoder module¶
-
class
immuneML.workflows.steps.DataEncoder.
DataEncoder
[source]¶ Bases:
immuneML.workflows.steps.Step.Step
-
static
run
(input_params: Optional[immuneML.workflows.steps.StepParams.StepParams] = None)[source]¶
-
static
immuneML.workflows.steps.DataEncoderParams module¶
-
class
immuneML.workflows.steps.DataEncoderParams.
DataEncoderParams
(dataset: immuneML.data_model.dataset.Dataset.Dataset, encoder: immuneML.encodings.DatasetEncoder.DatasetEncoder, encoder_params: immuneML.encodings.EncoderParams.EncoderParams, store_encoded_data: bool)[source]¶ Bases:
immuneML.workflows.steps.StepParams.StepParams
-
encoder_params
: immuneML.encodings.EncoderParams.EncoderParams¶
-
store_encoded_data
: bool¶
-
immuneML.workflows.steps.MLMethodAssessment module¶
-
class
immuneML.workflows.steps.MLMethodAssessment.
MLMethodAssessment
[source]¶ Bases:
immuneML.workflows.steps.Step.Step
-
fieldnames
= ['run', 'optimal_method_params', 'method', 'encoding_params', 'encoding', 'evaluated_on']¶
-
static
run
(input_params: Optional[immuneML.workflows.steps.MLMethodAssessmentParams.MLMethodAssessmentParams] = None)[source]¶
-
immuneML.workflows.steps.MLMethodAssessmentParams module¶
-
class
immuneML.workflows.steps.MLMethodAssessmentParams.
MLMethodAssessmentParams
(method: immuneML.ml_methods.MLMethod.MLMethod, dataset: immuneML.data_model.dataset.Dataset.Dataset, metrics: set, optimization_metric: immuneML.environment.Metric.Metric, label: str, path: pathlib.Path, split_index: int, predictions_path: pathlib.Path, ml_score_path: pathlib.Path)[source]¶
immuneML.workflows.steps.MLMethodTrainer module¶
-
class
immuneML.workflows.steps.MLMethodTrainer.
MLMethodTrainer
[source]¶ Bases:
immuneML.workflows.steps.Step.Step
-
static
run
(input_params: Optional[immuneML.workflows.steps.MLMethodTrainerParams.MLMethodTrainerParams] = None)[source]¶
-
static
store
(method: immuneML.ml_methods.MLMethod.MLMethod, input_params: immuneML.workflows.steps.MLMethodTrainerParams.MLMethodTrainerParams)[source]¶
-
static
immuneML.workflows.steps.MLMethodTrainerParams module¶
-
class
immuneML.workflows.steps.MLMethodTrainerParams.
MLMethodTrainerParams
(method: immuneML.ml_methods.MLMethod.MLMethod, dataset: immuneML.data_model.dataset.Dataset.Dataset, result_path: pathlib.Path, label: str, model_selection_cv: bool, model_selection_n_folds: int, cores_for_training: int, train_predictions_path: pathlib.Path, ml_details_path: pathlib.Path, optimization_metric: str)[source]¶
immuneML.workflows.steps.SignalImplanter module¶
-
class
immuneML.workflows.steps.SignalImplanter.
SignalImplanter
[source]¶ Bases:
immuneML.workflows.steps.Step.Step
-
DATASET_NAME
= 'simulated_dataset'¶
-
static
run
(simulation_state: Optional[immuneML.simulation.SimulationState.SimulationState] = None)[source]¶
-
immuneML.workflows.steps.Step module¶
-
class
immuneML.workflows.steps.Step.
Step
[source]¶ Bases:
object
- This class encapsulates steps in the analysis which will likely be often used, such as:
dataset encoding
training of machine learning models
signal implanting in repertoires without any signals etc.
For a custom analysis which is not likely to be repeated for different settings (e.g. such as with a different encoding), create a custom class inheriting AbstractProcess from workflows.processes package.
-
abstract static
run
(input_params: Optional[immuneML.workflows.steps.StepParams.StepParams] = None)[source]¶