immuneML.workflows.instructions.dataset_generation package¶
Submodules¶
immuneML.workflows.instructions.dataset_generation.DatasetExportInstruction module¶
- class immuneML.workflows.instructions.dataset_generation.DatasetExportInstruction.DatasetExportInstruction(datasets: List[Dataset], number_of_processes: int = 1, preprocessing_sequence: List[Preprocessor] = None, result_path: Path = None, name: str = None)[source]¶
Bases:
InstructionDatasetExport instruction takes a list of datasets as input, optionally applies preprocessing steps, and outputs the data in specified formats.
Specification arguments:
datasets (list): a list of datasets to export in all given formats
preprocessing_sequence (list): which preprocessing sequence to use on the dataset(s), this item is optional and does not have to be specified. When specified, the same preprocessing sequence will be applied to all datasets.
number_of_processes (int): how many processes to use during repertoire export (not used for sequence datasets)
YAML specification:
instructions: my_dataset_export_instruction: # user-defined instruction name type: DatasetExport # which instruction to execute datasets: # list of datasets to export - my_generated_dataset - my_dataset_from_adaptive preprocessing_sequence: my_preprocessing_sequence number_of_processes: 4
- run(result_path: Path) DatasetExportState[source]¶
immuneML.workflows.instructions.dataset_generation.DatasetExportState module¶
- class immuneML.workflows.instructions.dataset_generation.DatasetExportState.DatasetExportState(datasets: List[immuneML.data_model.datasets.Dataset.Dataset], formats: List[str], preprocessing_sequence: List[immuneML.preprocessing.Preprocessor.Preprocessor], paths: dict, result_path: pathlib.Path, name: str)[source]¶
Bases:
object- formats: List[str]¶
- name: str¶
- paths: dict¶
- preprocessing_sequence: List[Preprocessor]¶
- result_path: Path¶