immuneML.workflows.instructions.train_gen_model package¶
Submodules¶
immuneML.workflows.instructions.train_gen_model.TrainGenModelInstruction module¶
- class immuneML.workflows.instructions.train_gen_model.TrainGenModelInstruction.TrainGenModelInstruction(dataset: Dataset = None, method: GenerativeModel = None, number_of_processes: int = 1, gen_examples_count: int = 100, result_path: Path = None, name: str = None, reports: list = None, export_generated_dataset: bool = True, export_combined_dataset: bool = False, training_percentage: float = None)[source]¶
Bases:
GenModelInstruction
TrainGenModel instruction implements training generative AIRR models on receptor level. Models that can be trained for sequence generation are listed under Generative Models section.
This instruction takes a dataset as input which will be used to train a model, the model itself, and the number of sequences to generate to illustrate the applicability of the model. It can also produce reports of the fitted model and reports of original and generated sequences.
To use the generative model previously trained with immuneML, see ApplyGenModel instruction.
Specification arguments:
dataset: dataset to use for fitting the generative model; it has to be defined under definitions/datasets
method: which model to fit (defined previously under definitions/ml_methods)
number_of_processes (int): how many processes to use for fitting the model
gen_examples_count (int): how many examples (sequences, repertoires) to generate from the fitted model
reports (list): list of report ids (defined under definitions/reports) to apply after fitting a generative model and generating gen_examples_count examples; these can be data reports (to be run on generated examples), ML reports (to be run on the fitted model)
YAML specification:
instructions: my_train_gen_model_inst: # user-defined instruction name type: TrainGenModel dataset: d1 # defined previously under definitions/datasets model: model1 # defined previously under definitions/ml_methods gen_examples_count: 100 number_of_processes: 4 training_percentage: 0.7 export_generated_dataset: True export_combined_dataset: False reports: [data_rep1, ml_rep2]
- MAX_ELEMENT_COUNT_TO_SHOW = 10¶
- run(result_path: Path) TrainGenModelState [source]¶
- class immuneML.workflows.instructions.train_gen_model.TrainGenModelInstruction.TrainGenModelState(result_path: pathlib.Path = None, name: str = None, gen_examples_count: int = None, model_path: pathlib.Path = None, generated_dataset: immuneML.data_model.datasets.Dataset.Dataset = None, exported_datasets: Dict[str, pathlib.Path] = <factory>, report_results: Dict[str, List[immuneML.reports.ReportResult.ReportResult]] = <factory>, combined_dataset: immuneML.data_model.datasets.Dataset.Dataset = None, train_dataset: immuneML.data_model.datasets.Dataset.Dataset = None, test_dataset: immuneML.data_model.datasets.Dataset.Dataset = None, training_percentage: float = None)[source]¶
Bases:
object
- combined_dataset: Dataset = None¶
- exported_datasets: Dict[str, Path]¶
- gen_examples_count: int = None¶
- generated_dataset: Dataset = None¶
- model_path: Path = None¶
- name: str = None¶
- report_results: Dict[str, List[ReportResult]]¶
- result_path: Path = None¶
- test_dataset: Dataset = None¶
- train_dataset: Dataset = None¶
- training_percentage: float = None¶