immuneML.ml_metrics package¶
Submodules¶
immuneML.ml_metrics.ClassificationMetric module¶
- class immuneML.ml_metrics.ClassificationMetric.ClassificationMetric(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)[source]¶
Bases:
Enum- ACCURACY = 'accuracy_score'¶
- AUC = 'roc_auc_score'¶
- AUC_OVO = 'roc_auc_score_ovo'¶
- AUC_OVR = 'roc_auc_score_ovr'¶
- AVERAGE_PRECISION = 'average_precision_score'¶
- BALANCED_ACCURACY = 'balanced_accuracy_score'¶
- BRIER_SCORE = 'brier_score_loss'¶
- CONFUSION_MATRIX = 'confusion_matrix'¶
- F1_MACRO = 'f1_score_macro'¶
- F1_MICRO = 'f1_score_micro'¶
- F1_WEIGHTED = 'f1_score_weighted'¶
- LOG_LOSS = 'log_loss'¶
- PRECISION = 'precision_score'¶
- PRECISION_MACRO = 'precision_score_macro'¶
- PRECISION_MICRO = 'precision_score_micro'¶
- PRECISION_WEIGHTED = 'precision_score_weighted'¶
- RECALL = 'recall_score'¶
- RECALL_MACRO = 'recall_score_macro'¶
- RECALL_MICRO = 'recall_score_micro'¶
- RECALL_WEIGHTED = 'recall_score_weighted'¶
immuneML.ml_metrics.ClusteringMetric module¶
immuneML.ml_metrics.MetricUtil module¶
- class immuneML.ml_metrics.MetricUtil.MetricUtil[source]¶
Bases:
object- static get_metric_fn(metric: ClassificationMetric)[source]¶
- static score_for_metric(metric: ClassificationMetric, predicted_y, predicted_proba_y, true_y, classes, pos_class=None)[source]¶
Note: when providing label classes, make sure the ‘positive class’ is sorted last. This sorting should be done automatically when accessing Label.values
immuneML.ml_metrics.ml_metrics module¶
- immuneML.ml_metrics.ml_metrics.brier_score_loss(true_y, predicted_y, sample_weight=None, labels=None)[source]¶
- immuneML.ml_metrics.ml_metrics.precision_score_macro(true_y, predicted_y, sample_weight=None, labels=None)[source]¶
- immuneML.ml_metrics.ml_metrics.precision_score_micro(true_y, predicted_y, sample_weight=None, labels=None)[source]¶
- immuneML.ml_metrics.ml_metrics.precision_score_weighted(true_y, predicted_y, sample_weight=None, labels=None)[source]¶
- immuneML.ml_metrics.ml_metrics.recall_score_macro(true_y, predicted_y, sample_weight=None, labels=None)[source]¶
- immuneML.ml_metrics.ml_metrics.recall_score_micro(true_y, predicted_y, sample_weight=None, labels=None)[source]¶
- immuneML.ml_metrics.ml_metrics.recall_score_weighted(true_y, predicted_y, sample_weight=None, labels=None)[source]¶
- immuneML.ml_metrics.ml_metrics.roc_auc_score(true_y, predicted_y, sample_weight=None, labels=None, multiclass: str = 'raise')[source]¶