immuneML.workflows.steps package¶
Subpackages¶
- immuneML.workflows.steps.data_splitter package
- Submodules
- immuneML.workflows.steps.data_splitter.DataSplitter module
- immuneML.workflows.steps.data_splitter.DataSplitterParams module
- immuneML.workflows.steps.data_splitter.LeaveOneOutSplitter module
- immuneML.workflows.steps.data_splitter.ManualSplitter module
- immuneML.workflows.steps.data_splitter.Util module
- Module contents
Submodules¶
immuneML.workflows.steps.DataEncoder module¶
immuneML.workflows.steps.DataEncoderParams module¶
- class immuneML.workflows.steps.DataEncoderParams.DataEncoderParams(dataset: immuneML.data_model.datasets.Dataset.Dataset, encoder: immuneML.encodings.DatasetEncoder.DatasetEncoder, encoder_params: immuneML.encodings.EncoderParams.EncoderParams)[source]¶
Bases:
StepParams
- encoder: DatasetEncoder¶
- encoder_params: EncoderParams¶
immuneML.workflows.steps.DataWeighter module¶
immuneML.workflows.steps.DataWeighterParams module¶
- class immuneML.workflows.steps.DataWeighterParams.DataWeighterParams(dataset: immuneML.data_model.datasets.Dataset.Dataset, weighting_strategy: immuneML.example_weighting.ExampleWeightingStrategy.ExampleWeightingStrategy, weighting_params: immuneML.example_weighting.ExampleWeightingParams.ExampleWeightingParams)[source]¶
Bases:
StepParams
- weighting_params: ExampleWeightingParams¶
- weighting_strategy: ExampleWeightingStrategy¶
immuneML.workflows.steps.MLMethodAssessment module¶
immuneML.workflows.steps.MLMethodAssessmentParams module¶
- class immuneML.workflows.steps.MLMethodAssessmentParams.MLMethodAssessmentParams(method: MLMethod, dataset: Dataset, metrics: set, optimization_metric: ClassificationMetric, label: Label, path: Path, split_index: int, predictions_path: Path, ml_score_path: Path)[source]¶
Bases:
StepParams
immuneML.workflows.steps.MLMethodTrainer module¶
- class immuneML.workflows.steps.MLMethodTrainer.MLMethodTrainer[source]¶
Bases:
Step
- static run(input_params: MLMethodTrainerParams = None)[source]¶
- static store(method: MLMethod, input_params: MLMethodTrainerParams)[source]¶
immuneML.workflows.steps.MLMethodTrainerParams module¶
- class immuneML.workflows.steps.MLMethodTrainerParams.MLMethodTrainerParams(method: ~immuneML.ml_methods.classifiers.MLMethod.MLMethod, dataset: ~immuneML.data_model.datasets.Dataset.Dataset, result_path: ~pathlib.Path, label: <module 'immuneML.environment.Label' from '/Users/milenpa/PycharmProjects/BMIimmuneML/immuneML/environment/Label.py'>, model_selection_cv: bool, model_selection_n_folds: int, cores_for_training: int, train_predictions_path: ~pathlib.Path, optimization_metric: str)[source]¶
Bases:
StepParams
immuneML.workflows.steps.Step module¶
- class immuneML.workflows.steps.Step.Step[source]¶
Bases:
object
- This class encapsulates steps in the analysis which will likely be often used, such as:
dataset encoding
training of machine learning models
signal implanting in repertoires without any signals etc.
For a custom analysis which is not likely to be repeated for different settings (e.g. such as with a different encoding), create a custom class inheriting AbstractProcess from workflows.processes package.
- abstract static run(input_params: StepParams = None)[source]¶