import numpy as np
from sklearn import metrics
[docs]
def brier_score_loss(true_y, predicted_y, sample_weight=None, labels=None):
return metrics.brier_score_loss(true_y, predicted_y, sample_weight=sample_weight)
[docs]
def precision_score_micro(true_y, predicted_y, sample_weight=None, labels=None):
return metrics.precision_score(true_y, predicted_y, average="micro", sample_weight=sample_weight, labels=labels)
[docs]
def precision_score_macro(true_y, predicted_y, sample_weight=None, labels=None):
return metrics.precision_score(true_y, predicted_y, average="macro", sample_weight=sample_weight, labels=labels)
[docs]
def precision_score_weighted(true_y, predicted_y, sample_weight=None, labels=None):
return metrics.precision_score(true_y, predicted_y, average="weighted", sample_weight=sample_weight, labels=labels)
[docs]
def recall_score_micro(true_y, predicted_y, sample_weight=None, labels=None):
return metrics.recall_score(true_y, predicted_y, average="micro", sample_weight=sample_weight, labels=labels)
[docs]
def recall_score_macro(true_y, predicted_y, sample_weight=None, labels=None):
return metrics.recall_score(true_y, predicted_y, average="macro", sample_weight=sample_weight, labels=labels)
[docs]
def recall_score_weighted(true_y, predicted_y, sample_weight=None, labels=None):
return metrics.recall_score(true_y, predicted_y, average="weighted", sample_weight=sample_weight, labels=labels)
[docs]
def f1_score_weighted(true_y, predicted_y, sample_weight=None):
return metrics.f1_score(true_y, predicted_y, average="weighted", sample_weight=sample_weight)
[docs]
def f1_score_micro(true_y, predicted_y, sample_weight=None):
return metrics.f1_score(true_y, predicted_y, average="micro", sample_weight=sample_weight)
[docs]
def f1_score_macro(true_y, predicted_y, sample_weight=None):
return metrics.f1_score(true_y, predicted_y, average="macro", sample_weight=sample_weight)
[docs]
def roc_auc_score_ovo(true_y, predicted_y, sample_weight=None, labels=None):
return roc_auc_score(true_y, predicted_y, sample_weight=sample_weight, labels=labels, multiclass='ovo')
[docs]
def roc_auc_score_ovr(true_y, predicted_y, sample_weight=None, labels=None):
return roc_auc_score(true_y, predicted_y, sample_weight=sample_weight, labels=labels, multiclass='ovr')
[docs]
def roc_auc_score(true_y, predicted_y, sample_weight=None, labels=None, multiclass: str = 'raise'):
predictions = np.array(predicted_y) if not isinstance(predicted_y, np.ndarray) else predicted_y
true_values = np.array(true_y) if not isinstance(true_y, np.ndarray) else true_y
if predictions.shape == true_values.shape:
return metrics.roc_auc_score(true_values, predictions, sample_weight=sample_weight, labels=labels,
multi_class=multiclass)
elif len(predictions.shape) == 2 and predictions.shape[1] == 2:
return metrics.roc_auc_score(true_values, predictions[:, 1], sample_weight=sample_weight, labels=labels,
multi_class=multiclass)
else:
return -1