immuneML.workflows.instructions.ligo_sim_feasibility package¶
Submodules¶
immuneML.workflows.instructions.ligo_sim_feasibility.FeasibilitySummaryInstruction module¶
- class immuneML.workflows.instructions.ligo_sim_feasibility.FeasibilitySummaryInstruction.FeasibilitySumReports(signal_frequencies: immuneML.reports.ReportResult.ReportResult = None, signal_cooccurrences: immuneML.reports.ReportResult.ReportResult = None, signal_cond_probs: immuneML.reports.ReportResult.ReportResult = None, signal_joint_probs: immuneML.reports.ReportResult.ReportResult = None, p_gen_histogram: immuneML.reports.ReportResult.ReportResult = None, seq_len_dist: immuneML.reports.ReportResult.ReportResult = None, warnings: list = <factory>)[source]¶
Bases:
object
- p_gen_histogram: ReportResult = None¶
- seq_len_dist: ReportResult = None¶
- signal_cond_probs: ReportResult = None¶
- signal_cooccurrences: ReportResult = None¶
- signal_frequencies: ReportResult = None¶
- signal_joint_probs: ReportResult = None¶
- warnings: list¶
- class immuneML.workflows.instructions.ligo_sim_feasibility.FeasibilitySummaryInstruction.FeasibilitySummaryInstruction(simulation, sequence_count: int, number_of_processes: int, signals: List[Signal], name: str = None)[source]¶
Bases:
Instruction
FeasibilitySummary instruction creates a small synthetic dataset and reports summary metrics to show if the simulation with the given parameters is feasible. The input parameters to this analysis are the name of the simulation (the same that can be used with LigoSim instruction later if feasibility analysis looks acceptable), and the number of sequences to simulate for estimating the feasibility.
The feasibility analysis is performed for each generative model separately as these could differ in the analyses that will be reported.
Specification arguments:
simulation (str): a name of a simulation object containing a list of SimConfigItem as specified under definitions key; defines how to combine signals with simulated data; specified under definitions
sequence_count (int): how many sequences to generate to estimate feasibility (default value: 100 000)
number_of_processes (int): for the parts of the analysis that are possible to parallelize, how many processes to use
YAML specification:
instructions: my_feasibility_summary: # user-defined name of the instruction type: FeasibilitySummary # which instruction to execute simulation: sim1 sequence_count: 10000
- MAX_SIG_FREQ = 0.1¶
- MIN_SIG_FREQ = 1e-05¶
- class immuneML.workflows.instructions.ligo_sim_feasibility.FeasibilitySummaryInstruction.FeasibilitySummaryState(simulation: immuneML.simulation.SimConfig.SimConfig, sequence_count: int, signals: List[immuneML.simulation.implants.Signal.Signal], name: str = None, result_path: pathlib.Path = None, reports: Dict[str, immuneML.workflows.instructions.ligo_sim_feasibility.FeasibilitySummaryInstruction.FeasibilitySumReports] = <factory>)[source]¶
Bases:
object
- name: str = None¶
- reports: Dict[str, FeasibilitySumReports]¶
- result_path: Path = None¶
- sequence_count: int¶
- simulation: SimConfig¶
immuneML.workflows.instructions.ligo_sim_feasibility.feasibility_reports module¶
- immuneML.workflows.instructions.ligo_sim_feasibility.feasibility_reports.report_p_gen_histogram(sequences: BackgroundSequences, p_gen_bin_count: int, path: Path) ReportResult [source]¶
- immuneML.workflows.instructions.ligo_sim_feasibility.feasibility_reports.report_seq_len_dist(sequences: BackgroundSequences, sequence_type: SequenceType, path: Path) ReportResult [source]¶
- immuneML.workflows.instructions.ligo_sim_feasibility.feasibility_reports.report_signal_cond_probs(signal_matrix: ndarray, signal_names: list, path: Path) ReportResult [source]¶
- immuneML.workflows.instructions.ligo_sim_feasibility.feasibility_reports.report_signal_cooccurrences(unique_values: ndarray, counts: ndarray, path: Path) ReportResult [source]¶
- immuneML.workflows.instructions.ligo_sim_feasibility.feasibility_reports.report_signal_frequencies(frequencies: pandas.DataFrame, path: Path) ReportResult [source]¶
- immuneML.workflows.instructions.ligo_sim_feasibility.feasibility_reports.report_signal_joint_probs(signal_matrix: ndarray, signal_names: list, path: Path) ReportResult [source]¶