Source code for immuneML.dsl.instruction_parsers.ExploratoryAnalysisParser

import copy
from pathlib import Path

from immuneML.dsl.instruction_parsers.LabelHelper import LabelHelper
from immuneML.dsl.symbol_table.SymbolTable import SymbolTable
from immuneML.dsl.symbol_table.SymbolType import SymbolType
from immuneML.encodings.kmer_frequency.KmerFreqSequenceEncoder import KmerFreqSequenceEncoder
from immuneML.encodings.kmer_frequency.KmerFrequencyEncoder import KmerFrequencyEncoder
from immuneML.encodings.word2vec.Word2VecEncoder import Word2VecEncoder
from immuneML.environment.LabelConfiguration import LabelConfiguration
from immuneML.ml_methods.dim_reduction.DimRedMethod import DimRedMethod
from immuneML.util.ParameterValidator import ParameterValidator
from immuneML.workflows.instructions.exploratory_analysis.ExploratoryAnalysisInstruction import ExploratoryAnalysisInstruction
from immuneML.workflows.instructions.exploratory_analysis.ExploratoryAnalysisUnit import ExploratoryAnalysisUnit


[docs] class ExploratoryAnalysisParser: """ The specification consists of a list of analyses that need to be performed; Each analysis is defined by a dataset identifier, a report identifier and optionally encoding and labels and are loaded into ExploratoryAnalysisUnit objects; DSL example for ExploratoryAnalysisInstruction assuming that d1, p1, r1, r2, e1, w1 are defined previously in definitions section: .. highlight:: yaml .. code-block:: yaml instruction_name: type: ExploratoryAnalysis number_of_processes: 4 analyses: my_first_analysis: # simple analysis running a report on a dataset dataset: d1 report: r1 my_second_analysis: # more complicated analysis; including preprocessing, encoding, example weighting and running a report dataset: d1 preprocessing_sequence: p1 encoding: e1 example_weighting: w1 report: r2 labels: - CD - CMV """
[docs] def parse(self, key: str, instruction: dict, symbol_table: SymbolTable, path: Path = None) -> ExploratoryAnalysisInstruction: exp_analysis_units = {} ParameterValidator.assert_keys(instruction, ["analyses", "type", "number_of_processes"], "ExploratoryAnalysisParser", "ExploratoryAnalysis") ParameterValidator.assert_type_and_value(instruction["number_of_processes"], int, ExploratoryAnalysisParser.__name__, "number_of_processes") for analysis_key, analysis in instruction["analyses"].items(): params = self._prepare_params(analysis, symbol_table, f"{key}/{analysis_key}") params["number_of_processes"] = instruction["number_of_processes"] exp_analysis_units[analysis_key] = ExploratoryAnalysisUnit(**params) process = ExploratoryAnalysisInstruction(exploratory_analysis_units=exp_analysis_units, name=key) return process
def _prepare_params(self, analysis: dict, symbol_table: SymbolTable, yaml_location: str) -> dict: valid_keys = ["dataset", "report", "preprocessing_sequence", "labels", "encoding", "example_weighting", "dim_reduction"] ParameterValidator.assert_keys(list(analysis.keys()), valid_keys, "ExploratoryAnalysisParser", "analysis", False) params = {"dataset": symbol_table.get(analysis["dataset"]), "report": copy.deepcopy(symbol_table.get(analysis["report"]))} optional_params = self._prepare_optional_params(analysis, symbol_table, yaml_location) params = {**params, **optional_params} return params def _prepare_optional_params(self, analysis: dict, symbol_table: SymbolTable, yaml_location: str) -> dict: params = {} dataset = symbol_table.get(analysis["dataset"]) loc = ExploratoryAnalysisParser.__name__ if "encoding" in analysis: params["encoder"] = symbol_table.get(analysis["encoding"]).build_object(dataset, **symbol_table.get_config(analysis["encoding"])["encoder_params"]) if "labels" in analysis: params["label_config"] = LabelHelper.create_label_config(analysis["labels"], dataset, loc, yaml_location) else: params["label_config"] = LabelConfiguration() if "preprocessing_sequence" in analysis: params["preprocessing_sequence"] = symbol_table.get(analysis["preprocessing_sequence"]) if "example_weighting" in analysis: params["example_weighting"] = symbol_table.get(analysis["example_weighting"]).build_object(dataset, **symbol_table.get_config(analysis["example_weighting"])["example_weighting_params"]) if "dim_reduction" in analysis: valid_dim_reductions = {el.symbol: el.item for el in symbol_table.get_by_type(SymbolType.ML_METHOD) if isinstance(el.item, DimRedMethod)} ParameterValidator.assert_in_valid_list(analysis["dim_reduction"], list(valid_dim_reductions.keys()), ExploratoryAnalysisParser.__name__, "dim_reduction") params["dim_reduction"] = copy.deepcopy(valid_dim_reductions[analysis['dim_reduction']]) assert isinstance(params["encoder"], (KmerFreqSequenceEncoder, Word2VecEncoder)), \ (f"{loc}: {yaml_location}: Only KmerFrequency and Word2Vec are valid encoders when doing dimensionality" f" reduction.") return params