Source code for immuneML.encodings.evenness_profile.EvennessProfileRepertoireEncoder

import hashlib
from multiprocessing.pool import Pool

import math
from typing import Union

import dill
import numpy as np

from immuneML.analysis.entropy_calculations.EntropyCalculator import EntropyCalculator
from immuneML.caching.CacheHandler import CacheHandler
from immuneML.caching.CacheObjectType import CacheObjectType
from immuneML.data_model.SequenceSet import Repertoire
from immuneML.data_model.datasets.RepertoireDataset import RepertoireDataset
from immuneML.encodings.EncoderParams import EncoderParams
from immuneML.encodings.evenness_profile.EvennessProfileEncoder import EvennessProfileEncoder
from immuneML.util.Logger import log


[docs] class EvennessProfileRepertoireEncoder(EvennessProfileEncoder): @log def _encode_new_dataset(self, dataset, params: EncoderParams): encoded_data = self._encode_data(dataset, params) encoded_dataset = dataset.clone() encoded_dataset.encoded_data = encoded_data return encoded_dataset @log def _encode_examples(self, dataset, params: EncoderParams): arguments = [(repertoire.identifier, dill.dumps(repertoire), params) for repertoire in dataset.repertoires] with Pool(params.pool_size) as pool: chunksize = math.floor(dataset.get_example_count()/params.pool_size) + 1 repertoires = pool.starmap(self.get_encoded_repertoire, arguments, chunksize=chunksize) encoded_repertoire_list, repertoire_names, labels = zip(*repertoires) encoded_labels = {k: [dic[k] for dic in labels] for k in labels[0]} if params.encode_labels else None return list(encoded_repertoire_list), list(repertoire_names), encoded_labels
[docs] def get_encoded_repertoire(self, repertoire_id: str, repertoire: Union[bytes, Repertoire], params: EncoderParams): params.model = vars(self) serialized_repertoire = dill.dumps(repertoire) if isinstance(repertoire, Repertoire) else repertoire return CacheHandler.memo_by_params((("encoding_model", params.model), ("labels", params.label_config.get_labels_by_name()), ("repertoire_id", repertoire_id)), lambda: self.encode_repertoire(serialized_repertoire, params), CacheObjectType.ENCODING_STEP)
[docs] def encode_repertoire(self, repertoire, params: EncoderParams): if isinstance(repertoire, bytes): repertoire = dill.loads(repertoire) alphas = np.linspace(start=params.model["min_alpha"], stop=params.model["max_alpha"], num=params.model["dimension"]) data = repertoire.data counts = data.duplicate_count[np.array(data.vj_in_frame == 'T').flatten()] freqs = counts[np.nonzero(counts)] evenness_profile = np.array([np.exp(EntropyCalculator.renyi_entropy(freqs, alpha))/len(freqs) for alpha in alphas]) if params.encode_labels: label_config = params.label_config labels = dict() for label_name in label_config.get_labels_by_name(): label = repertoire.metadata[label_name] labels[label_name] = label else: labels = None return evenness_profile, repertoire.identifier, labels