Source code for immuneML.encodings.onehot.OneHotReceptorEncoder

import numpy as np

from immuneML.data_model.datasets.ElementDataset import ReceptorDataset
from immuneML.data_model.EncodedData import EncodedData
from immuneML.encodings.EncoderParams import EncoderParams
from immuneML.encodings.onehot.OneHotEncoder import OneHotEncoder


[docs] class OneHotReceptorEncoder(OneHotEncoder): """ One-hot encoded repertoire data is represented in a matrix with dimensions: [receptors, chains, sequence_lengths, one_hot_characters] when use_positional_info is true, the last 3 indices in one_hot_characters represents the positional information: - start position (high when close to start) - middle position (high in the middle of the sequence) - end position (high when close to end) """ def _encode_new_dataset(self, dataset, params: EncoderParams): encoded_data = self._encode_data(dataset, params) encoded_dataset = dataset.clone() encoded_dataset.encoded_data = encoded_data return encoded_dataset def _encode_data(self, dataset: ReceptorDataset, params: EncoderParams): data = dataset.data chains = sorted(np.unique(dataset.data.locus.tolist()).tolist()) assert len(chains) == 2, f"OneHotEncoder: {len(chains)} different loci in the dataset, expected 2." first_chain_seqs = data[np.array(data.locus.tolist()) == chains[0]] second_chain_seqs = data[np.array(data.locus.tolist()) == chains[1]] sequence_field = self._get_seq_field_name(params) max_seq_len = max(getattr(data, sequence_field).lengths) labels = self._get_labels(data, params) if params.encode_labels else None examples_first_chain = self._encode_sequence_list(first_chain_seqs, pad_n_sequences=len(data) // 2, pad_sequence_len=max_seq_len, params=params) examples_second_chain = self._encode_sequence_list(second_chain_seqs, pad_n_sequences=len(data) // 2, pad_sequence_len=max_seq_len, params=params) examples = np.stack((examples_first_chain, examples_second_chain), axis=1) feature_names = self._get_feature_names(max_seq_len, chains) if self.flatten: examples = examples.reshape((len(data) // 2, 2*max_seq_len*len(self.onehot_dimensions))) feature_names = [item for sublist in feature_names for subsublist in sublist for item in subsublist] encoded_data = EncodedData(examples=examples, labels=labels, example_ids=dataset.get_example_ids(), feature_names=feature_names, encoding=OneHotEncoder.__name__, info={"chain_names": chains}) return encoded_data def _get_feature_names(self, max_seq_len, chains): return [[[f"{chain}_{pos}_{dim}" for dim in self.onehot_dimensions] for pos in range(max_seq_len)] for chain in chains] def _get_labels(self, data, params: EncoderParams): label_names = params.label_config.get_labels_by_name() labels = data.topandas().groupby('cell_id').aggregate({ln: 'first' for ln in label_names})[label_names].to_dict('list') return labels