Source code for immuneML.hyperparameter_optimization.core.HPAssessment

import copy
from pathlib import Path

from immuneML.data_model.datasets.Dataset import Dataset
from immuneML.environment.Label import Label
from immuneML.environment.LabelConfiguration import LabelConfiguration
from immuneML.hyperparameter_optimization.HPSetting import HPSetting
from immuneML.hyperparameter_optimization.core.HPSelection import HPSelection
from immuneML.hyperparameter_optimization.core.HPUtil import HPUtil
from immuneML.hyperparameter_optimization.states.HPAssessmentState import HPAssessmentState
from immuneML.hyperparameter_optimization.states.TrainMLModelState import TrainMLModelState
from immuneML.ml_methods.classifiers.MLMethod import MLMethod
from immuneML.ml_methods.classifiers.SklearnMethod import SklearnMethod
from immuneML.ml_metrics.ClassificationMetric import ClassificationMetric
from immuneML.reports.ReportUtil import ReportUtil
from immuneML.util.Logger import print_log
from immuneML.util.PathBuilder import PathBuilder
from immuneML.workflows.instructions.MLProcess import MLProcess


[docs] class HPAssessment:
[docs] @staticmethod def run_assessment(state: TrainMLModelState) -> TrainMLModelState: state = HPAssessment._create_root_path(state) train_val_datasets, test_datasets = HPUtil.split_data(state.dataset, state.assessment, state.path, state.label_configuration) n_splits = len(train_val_datasets) for index in range(n_splits): state = HPAssessment.run_assessment_split(state, train_val_datasets[index], test_datasets[index], index, n_splits) return state
@staticmethod def _create_root_path(state: TrainMLModelState) -> TrainMLModelState: name = state.name if state.name is not None else "result" state.path = state.path / name return state
[docs] @staticmethod def run_assessment_split(state, train_val_dataset, test_dataset, split_index: int, n_splits): """run inner CV loop (selection) and retrain on the full train_val_dataset after optimal model is chosen""" print_log(f'Training ML model: running outer CV loop: started split {split_index + 1}/{n_splits}.\n', include_datetime=True) current_path = HPAssessment.create_assessment_path(state, split_index) assessment_state = HPAssessmentState(split_index, train_val_dataset, test_dataset, current_path, state.label_configuration) state.assessment_states.append(assessment_state) state = HPSelection.run_selection(state, train_val_dataset, current_path, split_index) state = HPAssessment.run_assessment_split_per_label(state, split_index) assessment_state.train_val_data_reports = ReportUtil.run_data_reports(train_val_dataset, state.assessment.reports.data_split_reports.values(), current_path / "data_report_train", state.number_of_processes, state.context) assessment_state.test_data_reports = ReportUtil.run_data_reports(test_dataset, state.assessment.reports.data_split_reports.values(), current_path / "data_report_test", state.number_of_processes, state.context) print_log(f'Training ML model: running outer CV loop: finished split {split_index + 1}/{n_splits}.\n', include_datetime=True) return state
[docs] @staticmethod def run_assessment_split_per_label(state: TrainMLModelState, split_index: int): """iterate through labels and hp_settings and retrain all models""" n_labels = state.label_configuration.get_label_count() for idx, label in enumerate(state.label_configuration.get_label_objects()): print_log(f"Training ML model: running the inner loop of nested CV: " f"retrain models for label {label.name} (label {idx + 1} / {n_labels}).\n", include_datetime=True) path = state.assessment_states[split_index].path for index, hp_setting in enumerate(state.hp_settings): if hp_setting != state.assessment_states[split_index].label_states[label.name].optimal_hp_setting: setting_path = path / f"{label.name}_{hp_setting}/" else: setting_path = path / f"{label.name}_{hp_setting}_optimal/" train_val_dataset = state.assessment_states[split_index].train_val_dataset test_dataset = state.assessment_states[split_index].test_dataset state = HPAssessment.reeval_on_assessment_split(state, train_val_dataset, test_dataset, hp_setting, setting_path, label, split_index) print_log(f"Training ML model: running the inner loop of nested CV: completed retraining models " f"for label {label.name} (label {idx + 1} / {n_labels}).\n", include_datetime=True) return state
[docs] @staticmethod def reeval_on_assessment_split(state: TrainMLModelState, train_val_dataset: Dataset, test_dataset: Dataset, hp_setting: HPSetting, path: Path, label: Label, split_index: int) \ -> TrainMLModelState: """retrain model for specific label, assessment split and hp_setting""" updated_hp_setting = HPAssessment.update_hp_setting_for_assessment(hp_setting, state, split_index, label.name) assessment_item = MLProcess(train_dataset=train_val_dataset, test_dataset=test_dataset, label=label, metrics=state.metrics, optimization_metric=state.optimization_metric, path=path, hp_setting=updated_hp_setting, report_context=state.context, ml_reports=state.assessment.reports.model_reports.values(), number_of_processes=state.number_of_processes, encoding_reports=state.assessment.reports.encoding_reports.values(), label_config=LabelConfiguration([label]), example_weighting=state.example_weighting, sequence_type=state.sequence_type, region_type=state.region_type).run(split_index) state.assessment_states[split_index].label_states[label.name].assessment_items[ str(hp_setting)] = assessment_item return state
[docs] @staticmethod def update_hp_setting_for_assessment(hp_setting: HPSetting, state: TrainMLModelState, split_index: int, label_name: str): if isinstance(hp_setting.ml_method, SklearnMethod) and hp_setting.ml_params['model_selection_cv']: updated_hp_setting = copy.deepcopy(hp_setting) updated_hp_setting.ml_params['model_selection_cv'] = False updated_hp_setting.ml_params['model_selection_n_folds'] = -1 comp_func = ClassificationMetric.get_search_criterion(state.optimization_metric) hp_items = state.assessment_states[split_index].label_states[label_name].selection_state.hp_items[ hp_setting.get_key()] if len(hp_items) > 1: optimal_params = {hp_item.performance[state.optimization_metric.name.lower()]: HPAssessment._get_only_hyperparams(hp_item.method.get_params()) for hp_item in hp_items} updated_hp_setting.ml_params[updated_hp_setting.ml_method.__class__.__name__] = optimal_params[ comp_func(optimal_params.keys())] updated_hp_setting.ml_method = updated_hp_setting.ml_method.__class__(parameters=updated_hp_setting.ml_params[updated_hp_setting.ml_method.__class__.__name__]) elif len(hp_items) == 1: updated_hp_setting.ml_params[updated_hp_setting.ml_method.__class__.__name__] = hp_items[ 0].method.model.get_params() updated_hp_setting.ml_method = updated_hp_setting.ml_method.__class__(parameters=updated_hp_setting.ml_params[updated_hp_setting.ml_method.__class__.__name__]) return updated_hp_setting else: return hp_setting
@staticmethod def _get_only_hyperparams(params: dict): return copy.deepcopy({k: v for k, v in params.items() if k not in ['intercept', 'coefficients']})
[docs] @staticmethod def create_assessment_path(state, split_index): current_path = state.path / f"split_{split_index + 1}" PathBuilder.build(current_path) return current_path