Source code for immuneML.hyperparameter_optimization.states.TrainMLModelState

from dataclasses import dataclass, field
from pathlib import Path
from typing import List, Set, Dict

from immuneML.data_model.SequenceParams import RegionType
from immuneML.data_model.datasets.Dataset import Dataset
from immuneML.environment.LabelConfiguration import LabelConfiguration
from immuneML.environment.SequenceType import SequenceType
from immuneML.example_weighting.ExampleWeightingStrategy import ExampleWeightingStrategy
from immuneML.hyperparameter_optimization.HPSetting import HPSetting
from immuneML.hyperparameter_optimization.config.SplitConfig import SplitConfig
from immuneML.hyperparameter_optimization.states.HPAssessmentState import HPAssessmentState
from immuneML.hyperparameter_optimization.states.HPItem import HPItem
from immuneML.hyperparameter_optimization.strategy.HPOptimizationStrategy import HPOptimizationStrategy
from immuneML.ml_metrics.ClassificationMetric import ClassificationMetric
from immuneML.reports.ReportResult import ReportResult


[docs] @dataclass class TrainMLModelState: dataset: Dataset hp_strategy: HPOptimizationStrategy hp_settings: List[HPSetting] assessment: SplitConfig selection: SplitConfig metrics: Set[ClassificationMetric] optimization_metric: ClassificationMetric label_configuration: LabelConfiguration path: Path = None context: dict = None number_of_processes: int = 1 reports: dict = field(default_factory=dict) name: str = None refit_optimal_model: bool = None export_all_ml_settings: bool = None example_weighting: ExampleWeightingStrategy = None sequence_type: SequenceType = SequenceType.AMINO_ACID region_type: RegionType = RegionType.IMGT_CDR3 optimal_hp_items: Dict[str, HPItem] = field(default_factory=dict) optimal_hp_item_paths: Dict[str, str] = field(default_factory=dict) assessment_states: List[HPAssessmentState] = field(default_factory=list) report_results: List[ReportResult] = field(default_factory=list)