Source code for immuneML.hyperparameter_optimization.states.TrainMLModelState
from dataclasses import dataclass, field
from pathlib import Path
from typing import List, Set, Dict
from immuneML.data_model.SequenceParams import RegionType
from immuneML.data_model.datasets.Dataset import Dataset
from immuneML.environment.LabelConfiguration import LabelConfiguration
from immuneML.environment.SequenceType import SequenceType
from immuneML.example_weighting.ExampleWeightingStrategy import ExampleWeightingStrategy
from immuneML.hyperparameter_optimization.HPSetting import HPSetting
from immuneML.hyperparameter_optimization.config.SplitConfig import SplitConfig
from immuneML.hyperparameter_optimization.states.HPAssessmentState import HPAssessmentState
from immuneML.hyperparameter_optimization.states.HPItem import HPItem
from immuneML.hyperparameter_optimization.strategy.HPOptimizationStrategy import HPOptimizationStrategy
from immuneML.ml_metrics.ClassificationMetric import ClassificationMetric
from immuneML.reports.ReportResult import ReportResult
[docs]
@dataclass
class TrainMLModelState:
dataset: Dataset
hp_strategy: HPOptimizationStrategy
hp_settings: List[HPSetting]
assessment: SplitConfig
selection: SplitConfig
metrics: Set[ClassificationMetric]
optimization_metric: ClassificationMetric
label_configuration: LabelConfiguration
path: Path = None
context: dict = None
number_of_processes: int = 1
reports: dict = field(default_factory=dict)
name: str = None
refit_optimal_model: bool = None
export_all_ml_settings: bool = None
example_weighting: ExampleWeightingStrategy = None
sequence_type: SequenceType = SequenceType.AMINO_ACID
region_type: RegionType = RegionType.IMGT_CDR3
optimal_hp_items: Dict[str, HPItem] = field(default_factory=dict)
optimal_hp_item_paths: Dict[str, str] = field(default_factory=dict)
assessment_states: List[HPAssessmentState] = field(default_factory=list)
report_results: List[ReportResult] = field(default_factory=list)