Source code for immuneML.ml_methods.dim_reduction.KernelPCA

from typing import List

from sklearn.decomposition import KernelPCA as SklearnPCA

from immuneML.ml_methods.dim_reduction.DimRedMethod import DimRedMethod


[docs] class KernelPCA(DimRedMethod): """ Principal component analysis (PCA) method which wraps scikit-learn's KernelPCA, allowing for non-linear dimensionality reduction. Input arguments for the method are the same as supported by scikit-learn (see `KernelPCA scikit-learn documentation <https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.KernelPCA.html>`_ for details). **YAML specification:** .. indent with spaces .. code-block:: yaml definitions: ml_methods: my_kernel_pca: KernelPCA: # arguments as defined by scikit-learn n_components: 5 kernel: rbf """ def __init__(self, name: str = None, **kwargs): super().__init__(name) self.method_kwargs = kwargs self.method = SklearnPCA(**self.method_kwargs)
[docs] def get_dimension_names(self) -> List[str]: return [f"PC{i+1}" for i in range(self.method.n_components)]