Source code for immuneML.ml_methods.util.Util

import logging

import random
import numpy as np
from sklearn.preprocessing import label_binarize

from immuneML.data_model.EncodedData import EncodedData
from immuneML.environment.Constants import Constants
from immuneML.environment.Label import Label


[docs] class Util:
[docs] @staticmethod def map_to_old_class_values(y, class_mapping: dict): try: old_class_type = np.array(list(class_mapping.values())).dtype mapped_y = np.copy(y).astype(object) for i in range(mapped_y.shape[0]): mapped_y[i] = class_mapping[y[i]] return mapped_y.astype(old_class_type) except Exception as e: logging.exception( "MLMethod util: error occurred when predicting the class assignment due to mismatch of class types.\n" f"Classes: {y}\nMapping:{class_mapping}") raise e
[docs] @staticmethod def map_to_new_class_values(y, class_mapping: dict): try: mapped_y = np.copy(y).astype(object) switched_mapping = {value: key for key, value in class_mapping.items()} new_class_type = np.array(list(switched_mapping.values())).dtype for i in range(mapped_y.shape[0]): mapped_y[i] = switched_mapping[y[i]] return mapped_y.astype(new_class_type) except Exception as e: logging.exception(f"MLMethod util: error occurred when fitting the model due to mismatch of class types.\n" f"Classes: {y}\nMapping:{class_mapping}") raise e
[docs] @staticmethod def make_class_mapping(y, label: Label) -> dict: """Creates a class mapping from a list of classes which can be strings, numbers of booleans; maps to same name in multi-class settings""" classes = label.values if len(classes) == 2: return Util.make_binary_class_mapping(y, label) else: return {cls: cls for cls in classes}
[docs] @staticmethod def make_binary_class_mapping(y, label: Label) -> dict: """ Creates binary class mapping from a list of classes which can be strings, numbers or boolean values Arguments: y: list of classes per example, as supplied to fit() method of the classifier; it should include all classes that will appear in the data label: label object along with information on the positive label Returns: mapping dictionary where 0 and 1 are always the keys and the values are original class names which were mapped for these values """ unique_values = sorted(set(label.values)) assert len(unique_values) == 2, f"MLMethod: there has two be exactly two classes to use this classifier," \ f" instead got {str(unique_values)[1:-1]}. For multi-class classification, " \ f"consider some of the other classifiers." if label.positive_class is None: return {0: unique_values[0], 1: unique_values[1]} else: assert label.positive_class in unique_values, \ (f"MLMethod: the specified positive class '{label.positive_class}' does not occur in the list of " f"available classes: {str(unique_values)[1:-1]}.") unique_values.remove(label.positive_class) return {0: unique_values[0], 1: label.positive_class}
[docs] @staticmethod def binarize_label_classes(true_y, predicted_y, classes): """ Binarizes the predictions in place using scikit-learn's label_binarize() method Necessary for some sklearn metrics, like roc_auc_score """ if hasattr(true_y, 'dtype') and (true_y.dtype.type is np.str_ or true_y.dtype.type is np.object_) \ or isinstance(true_y, list) and any(isinstance(item, str) for item in true_y): true_y = label_binarize(true_y, classes=classes) predicted_y = label_binarize(predicted_y, classes=classes) return true_y, predicted_y
[docs] @staticmethod def setup_pytorch(number_of_threads, random_seed, pytorch_device_name=None): import torch torch.set_num_threads(number_of_threads) torch.manual_seed(random_seed) if pytorch_device_name is not None: torch.device(pytorch_device_name)
[docs] @staticmethod def get_immuneML_version(): return 'immuneML ' + Constants.VERSION
[docs] @staticmethod def get_train_val_indices(n_examples, training_percentage, random_seed=None): indices = list(range(n_examples)) random.seed(random_seed) random.shuffle(indices) random.seed(None) limit = int(n_examples * training_percentage) train_indices = indices[:limit] val_indices = indices[limit:] return train_indices, val_indices
[docs] @staticmethod def subset_encoded_data(encoded_data: EncodedData, indices): return EncodedData(examples=encoded_data.examples[indices], labels={label_name: [encoded_data.labels[label_name][i] for i in indices] for label_name in encoded_data.labels.keys()}, example_ids=[encoded_data.example_ids[i] for i in indices], example_weights=[encoded_data.example_weights[i] for i in indices] if encoded_data.example_weights is not None else None, feature_names=encoded_data.feature_names, feature_annotations=encoded_data.feature_annotations, encoding=encoded_data.encoding, info=encoded_data.info)