Source code for immuneML.pairwise_repertoire_comparison.PairwiseRepertoireComparison
from pathlib import Path
import numpy as np
import pandas as pd
from immuneML.caching.CacheHandler import CacheHandler
from immuneML.data_model.datasets.RepertoireDataset import RepertoireDataset
from immuneML.pairwise_repertoire_comparison.ComparisonData import ComparisonData
from immuneML.util.Logger import log
from immuneML.util.PathBuilder import PathBuilder
[docs]
class PairwiseRepertoireComparison:
@log
def __init__(self, matching_columns: list, item_columns: list, path: Path, sequence_batch_size: int):
self.matching_columns = matching_columns
self.item_columns = item_columns
self.path = PathBuilder.build(path)
self.sequence_batch_size = sequence_batch_size
self.comparison_data = None
self.comparison_fn = None
@log
def create_comparison_data(self, dataset: RepertoireDataset) -> ComparisonData:
comparison_data = ComparisonData(dataset.get_repertoire_ids(), self.matching_columns, self.sequence_batch_size, self.path)
comparison_data.process_dataset(dataset)
return comparison_data
[docs]
def prepare_caching_params(self, dataset: RepertoireDataset):
return (
("dataset_identifier", dataset.identifier),
("item_attributes", self.item_columns)
)
[docs]
def compare(self, dataset: RepertoireDataset, comparison_fn, comparison_fn_name):
return CacheHandler.memo_by_params((("dataset_identifier", dataset.identifier),
"pairwise_comparison",
("comparison_fn", comparison_fn_name)),
lambda: self.compare_repertoires(dataset, comparison_fn))
[docs]
def memo_by_params(self, dataset: RepertoireDataset):
comparison_data = CacheHandler.memo_by_params(self.prepare_caching_params(dataset), lambda: self.create_comparison_data(dataset))
return comparison_data
@log
def compare_repertoires(self, dataset: RepertoireDataset, comparison_fn):
self.comparison_data = self.memo_by_params(dataset)
repertoire_count = dataset.get_example_count()
comparison_result = np.zeros([repertoire_count, repertoire_count])
repertoire_identifiers = dataset.get_repertoire_ids()
for index1 in range(repertoire_count):
repertoire_vector_1 = self.comparison_data.get_repertoire_vector(repertoire_identifiers[index1])
for index2 in range(index1, repertoire_count):
repertoire_vector_2 = self.comparison_data.get_repertoire_vector(repertoire_identifiers[index2])
comparison_result[index1, index2] = comparison_fn(repertoire_vector_1, repertoire_vector_2)
comparison_result[index2, index1] = comparison_result[index1, index2]
comparison_df = pd.DataFrame(comparison_result, columns=repertoire_identifiers, index=repertoire_identifiers)
return comparison_df
[docs]
def prepare_paralellization_arguments(self, repertoire_count: int, repertoire_identifiers: list, comparison_result):
arguments = []
for index1 in range(repertoire_count):
comparison_result[index1, index1] = 1
rep1 = repertoire_identifiers[index1]
for index2 in range(index1+1, repertoire_count):
rep2 = repertoire_identifiers[index2]
arguments.append((rep1, rep2))
return arguments