Source code for immuneML.preprocessing.filters.Filter

import logging
from abc import ABC

import pandas as pd

from immuneML.data_model.datasets.Dataset import Dataset
from immuneML.data_model.datasets.RepertoireDataset import RepertoireDataset
from immuneML.preprocessing.Preprocessor import Preprocessor
from immuneML.util.PathBuilder import PathBuilder


[docs] class Filter(Preprocessor, ABC): def _build_new_metadata(self, dataset: RepertoireDataset, indices_to_keep: list): if dataset.metadata_file: df = pd.read_csv(dataset.metadata_file).iloc[indices_to_keep, :] df.reset_index(drop=True, inplace=True) PathBuilder.build(self.result_path) path = self.result_path / f"{dataset.metadata_file.stem}_filtered.csv" df.to_csv(path, index=False) else: path = None return path def _remove_empty_repertoires(self, repertoires: list): filtered_repertoires = [] removed_repertoire_info = [] for repertoire in repertoires: if len(repertoire.data) > 0: filtered_repertoires.append(repertoire) else: removed_repertoire_info.append({"id": repertoire.identifier, 'subject_id': repertoire.metadata['subject_id'] if repertoire.metadata is not None and 'subject_id' in repertoire.metadata else ''}) logging.info(f"Removed {len(removed_repertoire_info)} repertoires:\n{removed_repertoire_info}") return filtered_repertoires
[docs] def check_dataset_not_empty(self, processed_dataset: Dataset, location="Filter"): assert processed_dataset.get_example_count() > 0, f"{location}: {type(processed_dataset).__name__} ended up empty after filtering. " \ f"Please adjust filter settings."