Source code for immuneML.IO.ml_method.MLExporter

import os
import pickle
import shutil
from pathlib import Path
from typing import List

from immuneML.IO.ml_method.MLMethodConfiguration import MLMethodConfiguration
from immuneML.hyperparameter_optimization.states.HPItem import HPItem
from immuneML.preprocessing.Preprocessor import Preprocessor
from immuneML.util.PathBuilder import PathBuilder


[docs] class MLExporter:
[docs] @staticmethod def export_zip(hp_item: HPItem, path: Path, label_name: str) -> str: state_path = path.absolute() export_path = MLExporter.export(hp_item, state_path / "exported") filename = f"ml_settings_{label_name}" abs_zip_path = Path(shutil.make_archive(state_path / "zip" / filename, "zip", str(export_path))).absolute() return abs_zip_path
[docs] @staticmethod def export(hp_item: HPItem, path: Path) -> Path: PathBuilder.build(path) preproc_filename = MLExporter._store_preprocessing_sequence(hp_item.hp_setting.preproc_sequence, path).name encoder_filename = MLExporter._store_encoder(hp_item.hp_setting.encoder, path).name hp_item.method.store(path) method_config = MLMethodConfiguration(label_name=hp_item.method.get_label_name(), label_positive_class=hp_item.method.get_positive_class(), label_values=hp_item.method.get_classes(), software_used=hp_item.method.get_package_info(), encoding_name=hp_item.hp_setting.encoder_name, encoding_parameters=hp_item.hp_setting.encoder_params, encoding_file=encoder_filename, encoding_class=type(hp_item.hp_setting.encoder).__name__, ml_method=type(hp_item.method).__name__, ml_method_name=hp_item.method.name, train_dataset_id=hp_item.train_dataset.identifier, train_dataset_name=hp_item.train_dataset.name, preprocessing_sequence_name=hp_item.hp_setting.preproc_sequence_name, preprocessing_file=os.path.basename(preproc_filename), preprocessing_parameters={type(seq).__name__: {str(key): str(val) for key, val in vars(seq).items()} for seq in hp_item.hp_setting.preproc_sequence}) method_config.store(path / 'ml_config.yaml') return path
@staticmethod def _store_encoder(encoder, path: Path) -> Path: filename = path / "encoder.pickle" type(encoder).store_encoder(encoder, filename) return filename @staticmethod def _store_preprocessing_sequence(preprocessing_sequence: List[Preprocessor], path: Path) -> Path: filename = path / "preprocessing_sequence.pickle" with filename.open("wb") as file: pickle.dump(preprocessing_sequence, file) return filename