Source code for immuneML.api.galaxy.GalaxyTrainGenModel

import logging
import shutil
from pathlib import Path

import yaml

from immuneML.IO.dataset_export.AIRRExporter import AIRRExporter
from immuneML.api.galaxy.GalaxyTool import GalaxyTool
from immuneML.api.galaxy.Util import Util
from immuneML.app.ImmuneMLApp import ImmuneMLApp
from immuneML.util.ParameterValidator import ParameterValidator
from immuneML.util.PathBuilder import PathBuilder
from immuneML.workflows.instructions.train_gen_model.TrainGenModelInstruction import TrainGenModelInstruction


[docs] class GalaxyTrainGenModel(GalaxyTool): def __init__(self, specification_path: Path, result_path: Path, **kwargs): Util.check_parameters(specification_path, result_path, kwargs, GalaxyTrainGenModel.__name__) super().__init__(specification_path, result_path, **kwargs) self.instruction_name = None def _run(self): PathBuilder.build(self.result_path) self._prepare_specs() app = ImmuneMLApp(self.yaml_path, self.result_path) state = app.run()[0] dataset = state.generated_dataset if state.combined_dataset is None else state.combined_dataset Util.export_galaxy_dataset(dataset, self.result_path) model_locations = list(self.result_path.glob(f"{self.instruction_name}/trained_model/*.zip")) model_export_path = PathBuilder.build(self.result_path / 'exported_models/') for model_location in model_locations: shutil.copyfile(model_location, model_export_path / model_location.name) logging.info(f"{GalaxyTrainGenModel.__name__}: immuneML has finished and the trained models and dataset were exported.") def _prepare_specs(self): with self.yaml_path.open("r") as file: specs = yaml.safe_load(file) location = GalaxyTrainGenModel.__name__ ParameterValidator.assert_keys_present(specs.keys(), ["definitions", "instructions"], location, "YAML specification") ParameterValidator.assert_all_in_valid_list(specs.keys(), ["definitions", "instructions", "output"], location, "YAML specification") ParameterValidator.assert_type_and_value(specs["instructions"], dict, location, "instructions") assert len(list(specs["instructions"].keys())) == 1, f"{location}: one instruction has to be specified under " \ f"`instructions`, got the following instead: {list(specs['instructions'].keys())}." self.instruction_name = list(specs["instructions"].keys())[0] ParameterValidator.assert_type_and_value(specs['instructions'][self.instruction_name], dict, location, self.instruction_name) ParameterValidator.assert_keys_present(specs['instructions'][self.instruction_name].keys(), ['type'], location, self.instruction_name) assert specs['instructions'][self.instruction_name]['type'] == TrainGenModelInstruction.__name__[:-11], \ f"{GalaxyTrainGenModel.__name__}: instruction `type` under {self.instruction_name} has to be {TrainGenModelInstruction.__name__[:-11]} " \ f"for this tool." Util.check_paths(specs, location) Util.update_result_paths(specs, self.result_path, self.yaml_path)