Source code for immuneML.encodings.kmer_frequency.KmerFrequencyEncoder

import abc
from typing import List

import pandas as pd
from sklearn.feature_extraction import DictVectorizer
from sklearn.preprocessing import StandardScaler

from immuneML.analysis.data_manipulation.NormalizationType import NormalizationType
from immuneML.caching.CacheHandler import CacheHandler
from immuneML.data_model.EncodedData import EncodedData
from immuneML.data_model.SequenceParams import RegionType
from immuneML.data_model.SequenceSet import ReceptorSequence
from immuneML.encodings.DatasetEncoder import DatasetEncoder
from immuneML.encodings.EncoderParams import EncoderParams
from immuneML.encodings.kmer_frequency.sequence_encoding.SequenceEncodingType import SequenceEncodingType
from immuneML.encodings.preprocessing.FeatureScaler import FeatureScaler
from immuneML.environment.SequenceType import SequenceType
from immuneML.util.EncoderHelper import EncoderHelper
from immuneML.util.ParameterValidator import ParameterValidator
from immuneML.util.ReadsType import ReadsType
from immuneML.util.ReflectionHandler import ReflectionHandler


[docs] class KmerFrequencyEncoder(DatasetEncoder): """ The KmerFrequencyEncoder class encodes a repertoire, sequence or receptor by frequencies of k-mers it contains. A k-mer is a sequence of letters of length k into which an immune receptor sequence can be decomposed. K-mers can be defined in different ways, as determined by the sequence_encoding. If a dataset contains receptor sequences from multiple loci (e.g., TRA and TRB), the k-mer frequencies will be computed per locus and then combined into a single feature vector per sample. The k-mer frequencies can be normalized in different ways, as determined by the normalization_type. The design matrix can optionally be scaled to unit variance and/or to zero mean. The k-mer frequencies can be computed based on unique sequences (clonotypes) or taking into account the counts of the sequences in the repertoire. **Dataset type:** - SequenceDatasets - ReceptorDatasets - RepertoireDatasets **Specification arguments:** - sequence_encoding (:py:mod:`~immuneML.encodings.kmer_frequency.sequence_encoding.SequenceEncodingType`): Sequence encoding determines how the sequences are decomposed into k-mers. It includes: - CONTINUOUS_KMER: contiguous overlapping k-mers of length k (e.g., ACDE -> {ACD, CDE} for k=3) - default value - GAPPED_KMER: k-mers of length k_left + k_right with a gap of size between min_gap and max_gap in between (e.g., ACDE -> {AC, A.D, CD, C.E} for k_left=1, k_right=1, min_gap=0, max_gap=1) - IMGT_CONTINUOUS_KMER: contiguous k-mers of length k with IMGT positional information (e.g., AHCDE -> {'AHC_105', 'HCD_106', 'CDE_107'} for k=3) - IMGT_GAPPED_KMER: k-mers of length k_left + k_right with a gap of size between min_gap and max_gap in between, annotated by the starting IMGT position (e.g., AHCDE -> {'AH_105', 'HC_106', 'CD_107', 'DE_116', 'A.C_105', 'H.D_106', 'C.E_107'} for k_left=1, k_right=1, min_gap=0, max_gap=1) - V_GENE_CONT_KMER: contiguous k-mers of length k, annotated by the V gene of the sequence they belong to (e.g., ACDE -> {V1-1_ACD, V1-1_CDE} for k=3 and V gene V1-1) - V_GENE_IMGT_KMER: contiguous k-mers of length k, annotated by the V gene of the sequence they belong to, annotated by the starting IMGT position (e.g., AHCDE -> {V1-1_AHC_105, V1-1_HCD_106, V1-1_CDE_107} for k=3 and V gene V1-1) - IDENTITY: the k-mers correspond to the original sequences - normalization_type (:py:mod:`~immuneML.analysis.data_manipulation.NormalizationType`): The way in which the k-mer frequencies should be normalized to unit norm; options are: binary, relative_frequency (also known as l1, default value), l2, max, none. For more information, see scikit-learn's documentation on `normalization <https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.normalize.html#sklearn.preprocessing.normalize>`_. - reads (:py:mod:`~immuneML.util.ReadsType`): Reads type signify whether the counts of the sequences in the repertoire will be taken into account. If :py:mod:`~immuneML.util.ReadsType.UNIQUE`, only unique sequences (clonotypes) are encoded, and if :py:mod:`~immuneML.util.ReadsType.ALL`, the sequence 'count' value is taken into account when determining the k-mer frequency. The default value for reads is unique. - k (int): Length of the k-mer (number of amino acids) when ungapped k-mers are used. The default value for k is 3. - k_left (int): When gapped k-mers are used, k_left indicates the length of the k-mer left of the gap. The default value for k_left is 1. - k_right (int): Same as k_left, but k_right determines the length of the k-mer right of the gap. The default value for k_right is 1. - min_gap (int): Minimum gap size when gapped k-mers are used. The default value for min_gap is 0. - max_gap: (int): Maximum gap size when gapped k-mers are used. The default value for max_gap is 0. - sequence_type (str): Whether to work with nucleotide or amino acid sequences. Amino acid sequences are the default. To work with either sequence type, the sequences of the desired type should be included in the datasets, e.g., listed under 'columns_to_load' parameter. By default, both types will be included if available. Valid values are: AMINO_ACID and NUCLEOTIDE. - scale_to_unit_variance (bool): whether to scale the design matrix after normalization to have unit variance per feature. Setting this argument to True might improve the subsequent classifier's performance depending on the type of the classifier. The default value for scale_to_unit_variance is true. - scale_to_zero_mean (bool): whether to scale the design matrix after normalization to have zero mean per feature. Setting this argument to True might improve the subsequent classifier's performance depending on the type of the classifier. However, if the original design matrix was sparse, setting this argument to True will destroy the sparsity and will increase the memory consumption. The default value for scale_to_zero_mean is false. - region_type (:py:mod:`~immuneML.data_model.SequenceParams.RegionType): the part of the receptor sequence to use in the analysis. The default value is IMGT_CDR3. Other values: IMGT_CDR1, IMGT_CDR2, IMGT_CDR3, IMGT_FR1, IMGT_FR2, IMGT_FR3, IMGT_FR4, IMGT_JUNCTION, FULL_SEQUENCE. Note that if an IMGT-based sequence encoding is used, the region_type has to be IMGT_CDR3 or IMGT_JUNCTION. **YAML specification:** .. indent with spaces .. code-block:: yaml definitions: encodings: my_continuous_kmer: KmerFrequency: normalization_type: RELATIVE_FREQUENCY reads: UNIQUE sequence_encoding: CONTINUOUS_KMER sequence_type: NUCLEOTIDE k: 3 scale_to_unit_variance: True scale_to_zero_mean: True my_gapped_kmer: KmerFrequency: normalization_type: RELATIVE_FREQUENCY reads: UNIQUE sequence_encoding: GAPPED_KMER sequence_type: AMINO_ACID k_left: 2 k_right: 2 min_gap: 1 max_gap: 3 scale_to_unit_variance: True scale_to_zero_mean: False """ STEP_ENCODED = "encoded" STEP_VECTORIZED = "vectorized" STEP_NORMALIZED = "normalized" STEP_SCALED = "scaled" dataset_mapping = { "RepertoireDataset": "KmerFreqRepertoireEncoder", "SequenceDataset": "KmerFreqSequenceEncoder", "ReceptorDataset": "KmerFreqReceptorEncoder" } def __init__(self, normalization_type: NormalizationType, reads: ReadsType, sequence_encoding: SequenceEncodingType, k: int = 0, k_left: int = 0, k_right: int = 0, min_gap: int = 0, max_gap: int = 0, name: str = None, scale_to_unit_variance: bool = False, scale_to_zero_mean: bool = False, sequence_type: SequenceType = None, include_v_genes: str = None, region_type: RegionType = RegionType.IMGT_CDR3): super().__init__(name=name) self.normalization_type = normalization_type self.reads = reads self.sequence_encoding = sequence_encoding self.include_v_genes = include_v_genes self.sequence_type = sequence_type self.region_type = region_type self.k = k self.k_left = k_left self.k_right = k_right self.min_gap = min_gap self.max_gap = max_gap self.scale_to_unit_variance = scale_to_unit_variance self.scale_to_zero_mean = scale_to_zero_mean self.scaler = None self.vectorizer = None @staticmethod def _prepare_parameters(normalization_type: str, reads: str, sequence_encoding: str, k: int = 0, k_left: int = 0, k_right: int = 0, min_gap: int = 0, max_gap: int = 0, name: str = None, scale_to_unit_variance: bool = False, scale_to_zero_mean: bool = False, sequence_type: str = SequenceType.AMINO_ACID.name, region_type: str = RegionType.IMGT_CDR3.name): location = KmerFrequencyEncoder.__name__ ParameterValidator.assert_in_valid_list(normalization_type.upper(), [item.name for item in NormalizationType], location, "normalization_type") ParameterValidator.assert_in_valid_list(reads.upper(), [item.name for item in ReadsType], location, "reads") ParameterValidator.assert_in_valid_list(sequence_encoding.upper(), [item.name for item in SequenceEncodingType], location, "sequence_encoding") ParameterValidator.assert_type_and_value(scale_to_zero_mean, bool, location, "scale_to_zero_mean") ParameterValidator.assert_type_and_value(scale_to_unit_variance, bool, location, "scale_to_unit_variance") ParameterValidator.assert_type_and_value(sequence_type, str, location, 'sequence_type') ParameterValidator.assert_in_valid_list(sequence_type.upper(), [st.name for st in SequenceType], location, 'sequence_type') if "IMGT" in sequence_encoding.upper(): assert sequence_type.upper() == SequenceType.AMINO_ACID.name, f"{location}: for IMGT-based k-mer frequency encoding (here: " \ f"{sequence_encoding.upper()}), sequence type has to be 'amino_acid'." vars_to_check = {"k": k, "k_left": k_left, "k_right": k_right, "min_gap": min_gap, "max_gap": max_gap} for param in vars_to_check.keys(): ParameterValidator.assert_type_and_value(vars_to_check[param], int, location, param, min_inclusive=0) if "gap" in sequence_encoding.lower(): assert k_left != 0 and k_right != 0, f"KmerFrequencyEncoder: sequence encoding {sequence_encoding} was chosen, but k_left " \ f"({k_left}) or k_right ({k_right}) have to be set and larger than 0." return { "normalization_type": NormalizationType[normalization_type.upper()], "reads": ReadsType[reads.upper()], "sequence_encoding": SequenceEncodingType[sequence_encoding.upper()], "name": name, "scale_to_zero_mean": scale_to_zero_mean, "scale_to_unit_variance": scale_to_unit_variance, 'sequence_type': SequenceType[sequence_type.upper()], 'region_type': RegionType[region_type.upper()], **vars_to_check }
[docs] @staticmethod def build_object(dataset=None, **params): EncoderHelper.check_dataset_type_available_in_mapping(dataset, KmerFrequencyEncoder) prepared_params = KmerFrequencyEncoder._prepare_parameters(**params) encoder = ReflectionHandler.get_class_by_name(KmerFrequencyEncoder.dataset_mapping[dataset.__class__.__name__], "kmer_frequency/")(**prepared_params) return encoder
[docs] def encode(self, dataset, params: EncoderParams): cache_params = self._prepare_caching_params(dataset, params) encoded_dataset = CacheHandler.memo_by_params(cache_params, lambda: self._encode_new_dataset(dataset, params)) EncoderHelper.sync_encoder_with_cache(cache_params, lambda: {'vectorizer': self.vectorizer, 'scaler': self.scaler}, self, ['vectorizer', 'scaler']) return encoded_dataset
def _prepare_caching_params(self, dataset, params: EncoderParams, step: str = ""): return (("dataset_identifier", dataset.identifier), ("labels", tuple(params.label_config.get_labels_by_name())), ("encoding", KmerFrequencyEncoder.__name__), ("learn_model", params.learn_model), ("step", step), ("encoding_params", tuple(vars(self).items()))) def _encode_data(self, dataset, params: EncoderParams) -> EncodedData: encoded_example_list, example_ids, encoded_labels = CacheHandler.memo_by_params( self._prepare_caching_params(dataset, params, KmerFrequencyEncoder.STEP_ENCODED), lambda: self._encode_examples(dataset, params)) self._initialize_vectorizer(params) vectorized_examples = self._vectorize_encoded(examples=encoded_example_list, params=params, vectorizer=self.vectorizer) feature_names = self.vectorizer.feature_names_ normalized_examples = FeatureScaler.normalize(vectorized_examples, self.normalization_type) if self.scale_to_unit_variance: examples = self.scale_normalized(params, dataset, normalized_examples) else: examples = normalized_examples encoded_data = EncodedData(examples=examples, labels=encoded_labels, feature_names=feature_names, example_ids=example_ids, feature_annotations=pd.DataFrame({'feature': feature_names}), encoding=KmerFrequencyEncoder.__name__, info={"sequence_type": self.sequence_type, 'region_type': self.region_type}) return encoded_data
[docs] def scale_normalized(self, params, dataset, normalized_examples): if params.learn_model: self.scaler = StandardScaler(with_mean=self.scale_to_zero_mean) examples = CacheHandler.memo_by_params( self._prepare_caching_params(dataset, params, step=KmerFrequencyEncoder.STEP_SCALED), lambda: FeatureScaler.standard_scale_fit(self.scaler, normalized_examples, with_mean=self.scale_to_zero_mean)) else: examples = CacheHandler.memo_by_params( self._prepare_caching_params(dataset, params, step=KmerFrequencyEncoder.STEP_SCALED), lambda: FeatureScaler.standard_scale(self.scaler, normalized_examples, with_mean=self.scale_to_zero_mean)) return examples
@abc.abstractmethod def _encode_new_dataset(self, dataset, params: EncoderParams): pass @abc.abstractmethod def _encode_examples(self, dataset, params: EncoderParams): pass def _initialize_vectorizer(self, params: EncoderParams): if self.vectorizer is None or params.learn_model: self.vectorizer = DictVectorizer(sparse=True, dtype=float) def _vectorize_encoded(self, examples: list, params: EncoderParams, vectorizer: DictVectorizer): if params.learn_model: vectorized_examples = vectorizer.fit_transform(examples) else: vectorized_examples = vectorizer.transform(examples) return vectorized_examples def _prepare_sequence_encoder(self): class_name = self.sequence_encoding.value sequence_encoder = ReflectionHandler.get_class_by_name(class_name, "encodings/") return sequence_encoder def _encode_sequence(self, sequence: ReceptorSequence, params: EncoderParams, sequence_encoder, counts, encode_locus: bool): params.model = vars(self) features = sequence_encoder.encode_sequence(sequence, params, encode_locus) if features is not None: for i in features: if self.reads == ReadsType.UNIQUE: counts[i] += 1 elif self.reads == ReadsType.ALL: counts[i] += sequence.duplicate_count return counts @abc.abstractmethod def _encode_locus(self, dataset): pass
[docs] def get_additional_files(self) -> List[str]: return []