Source code for immuneML.ml_methods.dim_reduction.TSNE

import logging
from typing import List

from sklearn.manifold import TSNE as SklearnTSNE

from immuneML.data_model.datasets.Dataset import Dataset
from immuneML.ml_methods.dim_reduction.DimRedMethod import DimRedMethod


[docs] class TSNE(DimRedMethod): """ t-distributed Stochastic Neighbor Embedding (t-SNE) method which wraps scikit-learn's TSNE. It can be useful for visualizing high-dimensional data. Input arguments for the method are the same as supported by scikit-learn (see `TSNE scikit-learn documentation <https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html#sklearn.manifold.TSNE>`_ for details). **YAML specification:** .. indent with spaces .. code-block:: yaml definitions: ml_methods: my_tsne: TSNE: # arguments as defined by scikit-learn n_components: 2 init: pca """ def __init__(self, name: str = None, **kwargs): super().__init__(name) self.method_kwargs = kwargs self.method = SklearnTSNE(**self.method_kwargs)
[docs] def fit(self, dataset: Dataset): self.method.fit(dataset.encoded_data.examples)
[docs] def transform(self, dataset: Dataset): logging.warning(f"{TSNE.__name__}: calling transform method of TSNE, but it only supports fit_transform. " f"Fitting the model and returning the transformed data...") return self.method.fit_transform(dataset.encoded_data.examples)
[docs] def fit_transform(self, dataset: Dataset): return self.method.fit_transform(dataset.encoded_data.examples)
[docs] def get_dimension_names(self) -> List[str]: return [f"tSNE_dimension_{i+1}" for i in range(self.method.n_components)]