Source code for immuneML.ml_methods.dim_reduction.UMAP

from typing import List

import umap

from immuneML.data_model.datasets.Dataset import Dataset
from immuneML.ml_methods.dim_reduction.DimRedMethod import DimRedMethod


[docs] class UMAP(DimRedMethod): """ Uniform manifold approximation and projection (UMAP) method which wraps umap-learn's UMAP. Input arguments for the method are the same as supported by umap-learn (see `UMAP in the umap-learn documentation <https://umap-learn.readthedocs.io/en/latest/>`_ for details). Note that when providing the arguments for UMAP in the immuneML's specification, it is not possible to set functions as input values (e.g., for the metric parameter, it has to be one of the predefined metrics available in umap-learn). **YAML specification:** .. indent with spaces .. code-block:: yaml definitions: ml_methods: my_umap: UMAP: # arguments as defined by scikit-learn n_components: 2 n_neighbors: 15 metric: euclidean """ def __init__(self, name: str = None, **kwargs): super().__init__(name) self.method_kwargs = kwargs self.method = umap.UMAP(**kwargs)
[docs] def fit(self, dataset: Dataset): self.method.fit(dataset.encoded_data.examples)
[docs] def transform(self, dataset: Dataset): return self.method.transform(dataset.encoded_data.examples)
[docs] def fit_transform(self, dataset: Dataset): return self.method.fit_transform(dataset.encoded_data.examples)
[docs] def get_dimension_names(self) -> List[str]: return [f"UMAP_dimension_{i+1}" for i in range(self.method.n_components)]