import logging
import os
import warnings
import zipfile
from pathlib import Path
import numpy as np
import pandas as pd
import yaml
from immuneML.data_model.datasets.Dataset import Dataset
from immuneML.reports.ReportOutput import ReportOutput
from immuneML.reports.ReportResult import ReportResult
from immuneML.reports.encoding_reports.EncodingReport import EncodingReport
from immuneML.util.ParameterValidator import ParameterValidator
from immuneML.util.PathBuilder import PathBuilder
[docs]
class DesignMatrixExporter(EncodingReport):
"""
Exports the design matrix and related information of a given encoded Dataset to csv files.
If the encoded data has more than 2 dimensions (such as when using the OneHot encoder with option Flatten=False),
the data are then exported to different formats to facilitate their import with external software.
**Specification arguments:**
- file_format (str): the format and extension of the file to store the design matrix. The supported formats are:
npy, csv, pt, hdf5, npy.zip, csv.zip or hdf5.zip.
Note: when using hdf5 or hdf5.zip output formats, make sure the 'hdf5' dependency is installed.
**YAML specification:**
.. indent with spaces
.. code-block:: yaml
definitions:
reports:
my_dme_report:
DesignMatrixExporter:
file_format: csv
"""
def __init__(self, dataset: Dataset = None, result_path: Path = None, file_format: str = None, number_of_processes: int = 1, name: str = None):
super().__init__(dataset=dataset, result_path=result_path, number_of_processes=number_of_processes, name=name)
self.file_format = file_format
[docs]
@classmethod
def build_object(cls, **kwargs):
ParameterValidator.assert_keys_present(list(kwargs.keys()), ['file_format', 'name'], DesignMatrixExporter.__name__, DesignMatrixExporter.__name__)
ParameterValidator.assert_in_valid_list(kwargs['file_format'],
['npy', 'csv', 'npy.zip', 'csv.zip', 'hdf5.zip', 'pt'],
DesignMatrixExporter.__name__, 'file_format')
return DesignMatrixExporter(**kwargs)
def _generate(self) -> ReportResult:
PathBuilder.build(self.result_path)
matrix_result = self._export_matrix()
details_result = self._export_details()
label_result = self._export_labels()
return ReportResult(self.name,
info="The design matrix and related information of a given encoded Dataset",
output_tables=[matrix_result, label_result], output_text=[details_result])
def _export_matrix(self) -> ReportOutput:
"""Create a file for the design matrix in the desired format."""
data = self.dataset.encoded_data.get_examples_as_np_matrix()
file_path = self.result_path / "design_matrix"
ext = os.path.splitext(self.file_format)[0]
file_path = file_path.with_suffix('.' + ext)
# Use h5py to create a hdf5 file.
if ext == "hdf5":
import h5py
with h5py.File(str(file_path), 'w') as hf_object:
hf_object.create_dataset(str(file_path), data=data)
# Use numpy to create a csv or npy file.
elif len(data.shape) <= 2 and ext == "csv":
feature_names = self.dataset.encoded_data.feature_names
header = ",".join(str(name) for name in feature_names) if feature_names is not None else ""
np.savetxt(fname=str(file_path), X=data, delimiter=",", comments='',
header=header)
elif ext == 'pt':
import torch
torch.save(torch.from_numpy(data), str(file_path))
else:
if ext != "npy":
logging.info('The selected Report format is not compatible, .npy is used instead')
file_path = file_path.with_suffix(".npy")
ext = "npy"
np.save(str(file_path), data)
# If requested, compress the file into a .zip.
if self.file_format.endswith(".zip"):
file_path_zip = file_path.with_suffix('.' + ext + '.zip')
with zipfile.ZipFile(str(file_path_zip), 'w') as zipped_file:
zipped_file.write(str(file_path), compress_type=zipfile.ZIP_DEFLATED)
os.remove(str(file_path))
file_path = file_path_zip
return ReportOutput(file_path, "design matrix")
def _export_details(self) -> ReportOutput:
file_path = self.result_path / "encoding_details.yaml"
with file_path.open("w") as file:
details = {
"feature_names": self.dataset.encoded_data.feature_names,
"encoding": self.dataset.encoded_data.encoding,
"example_ids": list(self.dataset.encoded_data.example_ids)
}
yaml.dump(details, file)
return ReportOutput(file_path, "encoding details")
def _export_labels(self) -> ReportOutput:
if self.dataset.encoded_data.labels is not None:
labels_df = pd.DataFrame(self.dataset.encoded_data.labels)
file_path = self.result_path / "labels.csv"
labels_df.to_csv(file_path, sep=",", index=False)
return ReportOutput(file_path, "exported labels")
[docs]
def check_prerequisites(self):
if self.dataset.encoded_data is None or self.dataset.encoded_data.examples is None:
warnings.warn("DesignMatrixExporter: the dataset is not encoded, skipping this report...")
return False
else:
return True