Source code for immuneML.reports.encoding_reports.FeatureDistribution

from pathlib import Path

import plotly.express as px

from immuneML.data_model.datasets.Dataset import Dataset
from immuneML.reports.ReportOutput import ReportOutput
from immuneML.reports.encoding_reports.FeatureReport import FeatureReport


[docs] class FeatureDistribution(FeatureReport): """ Encoding a dataset results in a numeric matrix, where the rows are examples (e.g., sequences, receptors, repertoires) and the columns are features. For example, when :ref:`KmerFrequency` encoder is used, the features are the k-mers (AAA, AAC, etc..) and the feature values are the frequencies per k-mer. This report plots the distribution of feature values. For each feature, a violin plot is created to show the distribution of feature values across all examples. The violin plots can be separated into different colors or facets using metadata labels (for example: plot the feature distributions of 'cohort1', 'cohort2' and 'cohort3' in different colors to spot biases). See also: :py:obj:`~immuneML.reports.encoding_reports.FeatureValueBarplot.FeatureValueBarplot` report to plot a simple bar chart per feature (average across examples), rather than the entire distribution. Or :py:obj:`~immuneML.reports.encoding_reports.FeatureDistribution.FeatureComparison` report to compare features across binary metadata labels (e.g., plot the feature value of 'sick' repertoires on the x axis, and 'healthy' repertoires on the y axis). Example output: .. image:: _static/images/reports/feature_distribution.png :alt: Feature distribution report example :width: 750 **Specification arguments:** - color_grouping_label (str): The label that is used to color each bar, at each level of the grouping_label. - row_grouping_label (str): The label that is used to group bars into different row facets. - column_grouping_label (str): The label that is used to group bars into different column facets. - mode (str): either 'normal', 'sparse' or 'auto' (default). in the 'normal' mode there are normal boxplots corresponding to each column of the encoded dataset matrix; in the 'sparse' mode all zero cells are eliminated before passing the data to the boxplots. If mode is set to 'auto', then it will automatically set to 'sparse' if the density of the matrix is below 0.01 - x_title (str): x-axis label - y_title (str): y-axis label **YAML specification:** .. indent with spaces .. code-block:: yaml definitions: reports: my_fdistr_report: FeatureDistribution: mode: sparse """
[docs] @classmethod def build_object(cls, **kwargs): return FeatureDistribution(**kwargs)
def __init__(self, dataset: Dataset = None, result_path: Path = None, color_grouping_label: str = None, row_grouping_label=None, column_grouping_label=None, mode: str = 'auto', x_title: str = None, y_title: str = None, number_of_processes: int = 1, name: str = None): super().__init__(dataset=dataset, result_path=result_path, color_grouping_label=color_grouping_label, row_grouping_label=row_grouping_label, column_grouping_label=column_grouping_label, number_of_processes=number_of_processes, name=name) self.x_title = x_title if x_title is not None else self.x self.y_title = y_title if y_title is not None else "value" self.mode = mode self.result_name = "feature_distributions" def _generate(self): result = self._generate_report_result() result.info = "Each boxplot represents one feature of the encoded data matrix, and shows the distribution of values for that feature." return result def _plot(self, data_long_format, mode='sparse') -> ReportOutput: sparse_threshold = 0.01 if self.mode == 'auto': if (data_long_format.value == 0).mean() < sparse_threshold: self.mode = 'normal' else: self.mode = 'sparse' if self.mode == 'sparse': return self._plot_sparse(data_long_format) elif self.mode == 'normal': return self._plot_normal(data_long_format) def _plot_sparse(self, data_long_format) -> ReportOutput: columns_to_filter = [self.x, "value"] for optional_column in [self.color, self.facet_row, self.facet_column]: if optional_column is not None: columns_to_filter.append(optional_column) data_long_format_filtered = data_long_format.loc[data_long_format.value != 0, columns_to_filter] columns_to_filter.remove("value") total_counts = data_long_format_filtered.groupby(columns_to_filter, as_index=False).agg( {"value": 'sum'}) data_long_format_filtered = data_long_format_filtered.merge(total_counts, on=self.x, how="left", suffixes=('', '_sum')) \ .fillna(0) \ .sort_values(by=self.x) \ .reset_index(drop=True) figure = px.violin(data_long_format_filtered, x=self.x, y="value", color=self.color, facet_row=self.facet_row, facet_col=self.facet_column, labels={ "value": self.y_title, self.x: self.x_title, }, template='plotly_white', color_discrete_sequence=px.colors.diverging.Tealrose) file_path = self.result_path / f"{self.result_name}.html" figure.write_html(str(file_path)) return ReportOutput(path=file_path, name="Distributions of feature values (sparse data, zero values filtered)") def _plot_normal(self, data_long_format) -> ReportOutput: figure = px.violin(data_long_format, x=self.x, y="value", color=self.color, facet_row=self.facet_row, facet_col=self.facet_column, labels={ "value": self.y_title, self.x: self.x_title, }, template='plotly_white', color_discrete_sequence=px.colors.diverging.Tealrose) file_path = self.result_path / f"{self.result_name}.html" figure.write_html(str(file_path)) return ReportOutput(path=file_path, name="Distributions of feature values")