Source code for immuneML.util.ImportHelper

import logging
from dataclasses import fields
from pathlib import Path

import numpy as np
import pandas as pd

from immuneML.IO.dataset_import.DatasetImportParams import DatasetImportParams
from immuneML.data_model.AIRRSequenceSet import AIRRSequenceSet
from immuneML.data_model.SequenceParams import RegionType, Chain
from immuneML.environment.Constants import Constants
from immuneML.environment.EnvironmentSettings import EnvironmentSettings
from immuneML.environment.SequenceType import SequenceType


[docs] class ImportHelper: DATASET_FORMAT = "yaml" INVALID_COLNAME_CHARS = [" ", "#", "&", "."]
[docs] @staticmethod def make_new_metadata_file(repertoires: list, metadata: pd.DataFrame, result_path: Path, dataset_name: str) -> Path: new_metadata = metadata.copy() new_metadata.loc[:, "filename"] = [repertoire.data_filename.name for repertoire in repertoires] new_metadata.loc[:, "identifier"] = [repertoire.identifier for repertoire in repertoires] metadata_filename = result_path / f"{dataset_name}_metadata.csv" new_metadata.to_csv(metadata_filename, index=False, sep=",") return metadata_filename
[docs] @staticmethod def get_repertoire_filename_from_metadata_row(metadata_row: pd.Series, params: DatasetImportParams) -> Path: if params.path is None: params.path = params.dataset_file.parent if params.dataset_file else params.metadata_file.parent filename = params.path / f"{metadata_row['filename']}" if not filename.is_file(): filename = params.path / f"repertoires/{metadata_row['filename']}" return filename
[docs] @staticmethod def get_receptor_filter_sort_kwargs(df: pd.DataFrame, warning=""): kwargs = {"by": ["cell_id", "locus"], "ascending": [True, True]} # umi's in single-cells sequencing data are the most trustworthy indicator of what the 'true' sequences were # duplicate count is less accurate but better than nothing if "umi_count" in df.columns and len(set(df["umi_count"])) > 1: warning += "Attempting to select the top chain pair based on highest umi_count" kwargs["by"].append("umi_count") kwargs["ascending"].append(False) # consensus_count reflects the count per umi; only useful if there are umi count ties if "consensus_count" in df.columns and len(set(df["consensus_count"])) > 1: warning += " and consensus_count" kwargs["by"].append("consensus_count") kwargs["ascending"].append(False) elif "duplicate_count" in df.columns and len(set(df["duplicate_count"])) > 1: warning += ("Since umi_count was not set, attempting to select the top chain pair based on highest " "duplicate_count") kwargs["by"].append("duplicate_count") kwargs["ascending"].append(False) else: warning += ("Since duplicate_count or umi_count was not set, two random chains will be selected for " "each receptor if more than 2 chains are present.") logging.warning(warning) return kwargs
[docs] @staticmethod def filter_illegal_receptors(df: pd.DataFrame) -> pd.DataFrame: assert "cell_id" in df.columns, "Receptor datasets cannot be constructed if cell_id field is missing." cell_id_counts = df.groupby('cell_id').size() logging.info(f"Total number of unique cell_ids (potential receptors): {len(cell_id_counts)}") if sum(cell_id_counts > 2) > 0: kwargs = ImportHelper.get_receptor_filter_sort_kwargs(df, f"Found {sum(cell_id_counts > 2)} " f"receptors with > 2 cell_ids. ") assert "locus" in df.columns, "Receptor datasets cannot be constructed if locus field is missing." df.sort_values(**kwargs, inplace=True) df.drop_duplicates(subset=["cell_id", "locus"], keep="first", inplace=True) cell_id_counts = df.groupby('cell_id').size() if sum(cell_id_counts == 1) > 0: logging.warning(f"Found {sum(cell_id_counts == 1)} receptors with 1 cell_id, removing these receptors.") df = df.loc[df.cell_id.isin(cell_id_counts[cell_id_counts >= 2].index)] logging.info(f"Total number of unique cell_ids (receptors) left after filtering: {df['cell_id'].nunique()}") return df
[docs] @staticmethod def add_default_fields_for_airr_seq_set(df: pd.DataFrame): default_fields = {f.name: f.type for f in fields(AIRRSequenceSet) if f.name not in df.columns} fields_dict = {} for f_name, f_type in default_fields.items(): val = AIRRSequenceSet.get_neutral_value(f_type) fields_dict[f_name] = [val for _ in range(df.shape[0])] df = pd.concat([df.reset_index().drop(columns='index'), pd.DataFrame(fields_dict)], axis=1) return df
[docs] @staticmethod def get_standardized_name(column_name: str) -> str: for invalid_char in ImportHelper.INVALID_COLNAME_CHARS: column_name = column_name.replace(invalid_char, "_") return column_name
[docs] @staticmethod def standardize_column_names(df): invalid_col_names = {col: ImportHelper.get_standardized_name(col) for col in df.columns if any(el in col for el in ImportHelper.INVALID_COLNAME_CHARS)} if len(invalid_col_names.keys()) > 0: logging.warning( f"Note that column names that contain characters which are not letters, numbers nor '_' signs" f" have been renamed to replace these invalid characters with '_' instead: {invalid_col_names}") return df.rename(columns=invalid_col_names)
[docs] @staticmethod def extract_locus_from_data(df: pd.DataFrame, params: DatasetImportParams, dataset_name: str): if 'locus' not in df.columns or any(df['locus'] == ''): if 'v_call' in df.columns and all(df.v_call != ''): locus_list = [v_call[:3] for v_call in df.v_call] elif 'j_call' in df.columns and all(df.j_call != ''): locus_list = [j_call[:3] for j_call in df.j_call] else: logging.info(f"{ImportHelper.__name__}: locus could not be extracted for dataset {dataset_name}.") return df df['locus'] = [Chain.get_chain_value(item) for item in locus_list] return df
[docs] @staticmethod def standardize_none_values(dataframe: pd.DataFrame): return (dataframe.replace( {key: Constants.UNKNOWN for key in ["unresolved", "no data", "na", "unknown", 'nan']}) .replace(np.nan, AIRRSequenceSet.get_neutral_value(float)))
[docs] @staticmethod def standardize_bool_values(dataframe: pd.DataFrame): return dataframe.replace({True: 'T', False: 'F', 'TRUE': 'T', 'FALSE': 'F', 'True': 'T', 'False': 'F', 'true': 'T', 'false': 'F'})
[docs] @staticmethod def add_cdr3_from_junction(df: pd.DataFrame): if 'junction' in df.columns and ('cdr3' not in df.columns or all(df['cdr3'] == '')): df['cdr3'] = df.junction.str[3:-3] if 'junction_aa' in df.columns and ('cdr3_aa' not in df.columns or all(df['cdr3_aa'] == '')): df['cdr3_aa'] = df.junction_aa.str[1:-1] return df
[docs] @staticmethod def drop_empty_sequences(dataframe: pd.DataFrame, import_empty_aa_sequences: bool, import_empty_nt_sequences: bool, region_type: RegionType) -> pd.DataFrame: sequence_types = [] if not import_empty_aa_sequences: sequence_types.append(SequenceType.AMINO_ACID) if not import_empty_nt_sequences: sequence_types.append(SequenceType.NUCLEOTIDE) for sequence_type in sequence_types: sequence_colname = region_type.value if sequence_type == SequenceType.NUCLEOTIDE else region_type.value + "_aa" sequence_name = sequence_type.name.lower().replace("_", " ") if sequence_colname in dataframe.columns: try: empty = dataframe[sequence_colname].isnull() | (dataframe[sequence_colname] == '') n_empty = sum(empty) except Exception as e: raise e if n_empty > 0: dataframe = dataframe.loc[~empty] logging.warning(f"{ImportHelper.__name__}: {n_empty} sequences were removed from the dataset " f"because they contained an empty {sequence_name} sequence after preprocessing. ") else: logging.warning(f"{ImportHelper.__name__}: column {sequence_colname} was not set, but is required " f"for filtering. Skipping this filtering...") return dataframe
[docs] @staticmethod def drop_illegal_character_sequences(dataframe: pd.DataFrame, import_illegal_characters: bool, import_with_stop_codon: bool, region_type: RegionType) -> pd.DataFrame: for sequence_type in SequenceType: if not import_illegal_characters: sequence_name = sequence_type.name.lower().replace("_", " ") legal_alphabet = EnvironmentSettings.get_sequence_alphabet(sequence_type) if sequence_type == SequenceType.AMINO_ACID and import_with_stop_codon: legal_alphabet.append(Constants.STOP_CODON) sequence_col_name = region_type.value if sequence_type == SequenceType.NUCLEOTIDE else region_type.value + "_aa" if sequence_col_name in dataframe.columns: is_illegal_seq = [ImportHelper.is_illegal_sequence(sequence, legal_alphabet) for sequence in dataframe[sequence_col_name]] n_illegal = sum(is_illegal_seq) n_total = dataframe.shape[0] if n_illegal > 0: dataframe.drop(dataframe.loc[is_illegal_seq].index, inplace=True) logging.warning( f"{ImportHelper.__name__}: {n_illegal}/{n_total} sequences were removed from the dataset " f"because their {sequence_name} sequence contained illegal characters. ") else: logging.warning(f"{ImportHelper.__name__}: column {sequence_col_name} is missing, illegal " f"characters were not checked.") return dataframe
[docs] @staticmethod def is_illegal_sequence(sequence, legal_alphabet) -> bool: if sequence is None: return False elif not isinstance(sequence, str): return True else: return not all(character in legal_alphabet for character in sequence)
[docs] @staticmethod def get_sequence_filenames(path: Path, dataset_name: str): data_file_extensions = ("*.tsv", "*.csv", "*.txt") if path.is_file(): filenames = [path] elif path.is_dir(): filenames = [] for pattern in data_file_extensions: filenames.extend(list(path.glob(pattern))) else: raise ValueError(f"ImportHelper: path '{path}' given in YAML specification is not a valid path. " f"This parameter can either point to a single file with immune receptor data or to a " f"directory containing such files.") assert len( filenames) >= 1, f"ImportHelper: the dataset {dataset_name} cannot be imported, no files were found under {path}.\n" \ f"Note that only files with the following extensions can be imported: {data_file_extensions}" return filenames
[docs] @staticmethod def extract_sequence_dataset_params(items=None, params=None) -> dict: result = {} if params is not None: result = {'region_type': params.region_type, 'receptor_chains': params.receptor_chains, 'organism': params.organism} if items is not None: for index, item in enumerate(items): metadata = item.metadata if params.paired else item.metadata.custom_params if item.metadata is not None else {} for key in metadata: if key in result and isinstance(result[key], set): result[key].add(metadata[key]) elif key not in result: result[key] = {metadata[key]} return result
[docs] @classmethod def filter_illegal_sequences(cls, df: pd.DataFrame, params: DatasetImportParams, location: str): try: if params.import_productive and hasattr(df, "productive"): if set(df.productive).issubset({'T', 'F'}): logging.info(f"ImportHelper: filtering {len(df)} sequences to only keep productive == 'T'...") df = df.loc[df.productive == 'T'] logging.info(f"ImportHelper: ... {len(df)} sequences left after filtering") else: logging.warning(f"ImportHelper: import_productive was set to True, but unexpected values were " f"found in the 'productive' column: {set(df.productive)} (expected 'T', 'F'). " f"This filtering has been skipped.") except AttributeError as e: logging.warning(f"An error occurred while filtering unproductive sequences while importing the " f"dataset {location}. Error: {e}. Filtering will be skipped.") try: if not params.import_out_of_frame and hasattr(df, "vj_in_frame"): if set(df.vj_in_frame).issubset({'T', 'F'}): logging.info(f"ImportHelper: import_out_of_frame is set to False. Filtering {len(df)} sequences " f"to only keep vj_in_frame != 'F'...") df = df.loc[df.vj_in_frame != 'F'] else: logging.warning(f"ImportHelper: import_out_of_frame was set to False, but unexpected values were " f"found in the 'vj_in_frame' column: {set(df.vj_in_frame)} (expected 'T', 'F'). " f"This filtering has been skipped.") except AttributeError as e: logging.warning(f"An error occurred while filtering out-of-frame sequences while importing the " f"dataset {location}. Error: {e}. Filtering will be skipped.") return df